
Library of efficient algorithms for phylogenetic analysis

Luana Bernardino da Silva

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering
Supervisors: Prof. Alexandre Paulo Lourenço Francisco

Prof. Cátia Raquel Jesus Vaz

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Alexandre Paulo Lourenço Francisco

Member of the Committee: Prof. Francisco João Duarte Cordeiro Correia dos Santos

January 2021

Acknowledgements

This thesis has been both a pleasure and a challenge to accomplish, and it would not have been made
possible without the tremendous help and support I have received.

I would first like to thank my supervisors, Alexandre Francisco and Cátia Vaz, for providing me with the
valuable support and guidance needed to accomplish this thesis, and most importantly for even giving me
the opportunity to be a part of it.

I would also like to thank my partner for all the help and motivation he gave me to keep going despite
all of the challenges, and for always being there for me through all the ups and downs.

Finally, I would like to thank my family and friends for believing in me, and for always providing me fun
distractions that create happy memories to help me keep going when times get rough.

This work was partly supported by national funds through FCT – Fundação para a Ciência e Tecnologia,
under projects PTDC/CCI-BIO/29676/2017 and UIDB/50021/2020.

i

ii

Abstract

Evolutionary relationships between species are usually inferred through phylogenetic analysis, which pro-
vides phylogenetic trees computed from allelic profiles built by sequencing specific regions of the sequences
and abstracting them to categorical indexes. With growing exchanges of people and merchandise, epidemics
have become increasingly important, and combining information of country-specific datasets can now reveal
unknown spreading patterns.

The phylogenetic analysis workflow is mainly composed of four consecutive steps, the distance calculation,
distance correction, inference algorithm, and local optimization steps. There are many phylogenetic tools
out there, however most implement only some of these steps and serve only one single purpose, such as one
type of algorithm. Another problem with these is that they are often hard to use and integrate, since each
of them has its own API.

This project resulted a library that implements the four steps of the workflow, and is highly performant,
extensible, reusable, and portable, while providing common APIs and documentation. It also differs from
other tools in the sense that, it is able to stop and resume the workflow whenever the user desires, and it was
built to be continuously extended and not just serve a single purpose.

The time benchmarks conducted on this library show that its implementations of the algorithms conform
to their theoretical time complexity. Meanwhile, the memory benchmarks showcase that the implementations
of the NJ algorithms follow a linear memory complexity, while the implementations of the MST and GCP
algorithms follow a quadratic memory complexity.

Key words: phylogeny; sequences; profiles; inference; algorithms; trees.

iii

iv

Resumo

As relações evolucionárias entre diferentes espécies são geralmente inferidas através de análise filogenética,
que fornece árvores filogenéticas, que podem ser computadas através de perfis alélicos construídos sequen-
ciando regiões específicas das sequências e abstraíndo-as em índices categóricos. Com o aumento de trocas de
pessoas e mercadorias, as epidemias têm-se tornado muito importantes, e combinar informações de datasets
específicos por país pode agora revelar padrões de propagação desconhecidos.

O fluxo de análise filogenética é composto principalmente por quatro passos consecutivos, o cálculo de
distâncias, a correção de distâncias, o algoritmo de inferência, e a otimização local. Existem muitas ferramen-
tas de filogenia, porém muitas implementam apenas alguns destes passos e servem apenas um propósito, por
exemplo um tipo de algoritmos. Outro problema é que muitas vezes são difíceis de usar e integrar, porque
cada uma tem a sua API.

Este projeto resultou numa biblioteca que implementa os quatro passos do fluxo, é eficiente, extensível,
reutilizável, e portável, e fornece APIs comuns e documentação. Esta difere das outras no sentido em que,
é capaz de parar e resumir o fluxo sempre que o utilizador deseja, e foi construída para ser continuamente
estendida e não servir apenas um propósito.

Os benchmarks de tempo conduzidos sobre esta biblioteca mostram que as suas implementações dos
algoritmos estão conforme as suas complexidades de tempo teóricas. Os benchmarks de memória demonstram
que as implementações dos algoritmos de NJ seguem uma complexidade de memória linear, enquanto que as
implementações dos algoritmos de MST e GCP seguem uma complexidade de memória quadrática.

Palavras Chave: filogenia; sequências; perfis; inferência; algoritmos; árvores.

v

vi

Contents

List of Figures viii

List of Tables x

List of Acronyms xi

1 Introduction 1
1.1 Objectives . 2
1.2 Document Structure . 3

2 Background 5
2.1 Phylogenetic Analysis . 5

2.1.1 Analysis . 5
2.1.2 Data Formats . 6

2.2 Similarity . 7
2.2.1 Typing . 7
2.2.2 Criterion . 8

2.3 Clustering . 10
2.3.1 Globally Closest Pairs . 11
2.3.2 Neighbour Joining . 12
2.3.3 Minimum Spanning Tree . 14

2.4 Optimization . 15
2.5 Related Work . 16
2.6 Discussion . 17

3 Proposed Solution 19
3.1 Requirements . 19

3.1.1 Functional . 20
3.1.2 Non Functional . 20
3.1.3 Use Cases . 20

3.2 Architecture . 22
3.2.1 Distance Calculation . 23
3.2.2 Distance Correction . 24
3.2.3 Inference Algorithm . 24
3.2.4 Local Optimization . 25

vii

3.2.5 Dataset Parsing . 25
3.2.6 Distance Matrix Parsing . 25
3.2.7 Phylogenetic Tree Parsing . 26

3.3 Technologies . 26
3.4 Discussion . 26

4 Implementation 27
4.1 Structure . 27

4.1.1 Arguments . 27
4.1.2 Reflection . 29
4.1.3 Exceptions . 29
4.1.4 Logging . 30

4.2 Data . 31
4.2.1 Dataset . 32
4.2.2 Distance Matrix . 33
4.2.3 Phylogenetic Tree . 34

4.3 Commands . 35
4.3.1 Distance Calculation . 36
4.3.2 Distance Correction . 36
4.3.3 Inference Algorithm . 37
4.3.4 Local Optimization . 38

4.4 Discussion . 39

5 Experimental Evaluation 41
5.1 Time . 41
5.2 Memory . 43
5.3 Discussion . 46

6 Final Remarks 51
6.1 Conclusions . 51
6.2 Future Work . 52

References 53

viii

List of Figures

1.1 Workflow abstraction of the phylogenetic analysis in the INNUENDO project. 2

2.1 Example of a rooted phylogenetic tree. 6
2.2 Example of an unrooted phylogenetic tree. 6
2.3 Example of a Newick representation of Figure 2.1. 7
2.4 Example of a Nexus representation of Figure 2.1. 7
2.5 Example of two sequences in FASTA format. 8
2.6 Example of two sequences in SNP format. 8
2.7 Example of three sequences in MLST format. Columns cox1 and rnl represent the loci of the

sequences, and the corresponding numbers represent the ids of the alleles observed in those loci. 8
2.8 Example of three sequences in MLVA format. 8
2.9 Example of a distance matrix resultant from applying the Hamming distance in Equation 2.1,

to the MLST dataset in Figure 2.7. 9
2.10 Example of a distance matrix in an asymmetric format. 10
2.11 Example of a distance matrix in a symmetric format. 10

3.1 Phylogenetic analysis workflow. 19
3.2 Use cases of the project. 21
3.3 Decomposition view of the main architecture. 22
3.4 Generalization view of the main architecture. 22
3.5 Generalization view of the reading and writing architecture. 23
3.6 Uses view of the architecture. 23
3.7 Generalization view of the distance calculation component. 23
3.8 Generalization view of the distance correction component. 24
3.9 Generalization view of the inference algorithm component. 24
3.10 Generalization view of the local optimization component. 25
3.11 Generalization view of the dataset parsing component. 25
3.12 Generalization view of the distance matrix parsing component. 26
3.13 Generalization view of the phylogenetic tree parsing component. 26

4.1 UML class diagram of the cli package. 28
4.2 UML class diagram of the reflection package. 29
4.3 UML class diagram of the exception package. 30
4.4 UML class diagram of the logging package. 31
4.5 UML class diagram of the data package. 31

ix

4.6 UML class diagram of the dataset package. 32
4.7 UML class diagram of the matrix package. 33
4.8 UML class diagram of the tree package. 34
4.9 UML class diagram of the command package. 35
4.10 UML class diagram of the distance package. 36
4.11 UML class diagram of the correction package. 36
4.12 UML class diagram of the algorithm package. 37
4.13 UML class diagram of the optimization package. 38

5.1 Running times in milliseconds for ten to one thousand profiles using the eager version. 42
5.2 Running times in milliseconds for MST algorithms compared to their time complexity. 44
5.3 Running times in milliseconds for GCP algorithms compared to their time complexity. 45
5.4 Running times in milliseconds for NJ algorithms compared to their time complexity. 46
5.5 Peak memory usage in megabytes for ten to one thousand profiles using the eager version. . . 47
5.6 Peak memory usage in megabytes for MST algorithms compared to their memory complexity. 48
5.7 Peak memory usage in megabytes for GCP algorithms compared to their memory complexity. 49
5.8 Peak memory usage in megabytes for NJ algorithms compared to their memory complexity. . 50

x

List of Tables

2.1 Major differences between some of the most well-know phylogenetic tools, regarding the phy-
logenetic analysis workflow. 18

5.1 Average running times in milliseconds for ten to one thousand profiles using the eager version. 42
5.2 Running times in milliseconds for ten to one thousand profiles using the lazy version. 43
5.3 Peak memory usage in megabytes for ten to one thousand profiles using the eager version. . . 44
5.4 Peak memory usage in megabytes for ten to one thousand profiles using the lazy version. . . . 47

xi

xii

List of Acronyms

DNA deoxyribonucleic acid

HPC High Performance Computing

NGS Next Generation Sequencing

EBNF Extended Backus–Naur Form

MLST Multilocus Sequence Typing

MLVA Multiple-Locus Variable Number Tandem Repeat Analysis

CSV comma-separated values

SNP Single Nucleotide Polymorphism

GCP Globally Closest Pairs

ME Minimum Evolution

NJ Neighbour Joining

MST Minimum Spanning Tree

SL Single-linkage

CL Complete-linkage

UPGMA Unweighted Pair Group Method with Arithmetic-mean

UPGMC Unweighted Pair Group Method with Centroid

WPGMA Weighted Pair Group Method with Arithmetic-mean

WPGMC Weighted Pair Group Method with Centroid

UNJ Unweighted Neighbour Joining

FNJ Fast Neighbour Joining

RNJ Relaxed Neighbour Joining

goeBURST globally optimized eBURST

eBURST eletronic Based Upon Related Sequence Types

xiii

ST Sequence Type

SLV Single Locus Variant

DLV Double Locus Variant

TLV Triple Locus Variant

cgMLST core genome MLST

LBR Local Branch Recrafting

SPR Subtree Pruning and Regrafting

NNI Nearest Neighbor Interchange

TBR Tree Bisection and Reconnection

JVM Java Virtual Machine

UML Unified Modeling Language

CLI Command Line Interface

xiv

Chapter 1

Introduction

The evolutionary relationships between different species or taxa are usually inferred through known phy-
logenetic analysis techniques. Some of these techniques rely on the inference of phylogenetic trees, which
can be computed from deoxyribonucleic acid (DNA) sequences, or from allelic profiles built by sequencing
specific regions of the sequences and abstracting them to categorical indexes. Phylogenetic trees are also
used in other contexts, such as to understand the evolutionary history of gene families, to allow phylogenetic
foot-printing, to trace the origin and transmission of infectious diseases, or to study the co-evolution of hosts
and parasites [1].

With growing exchanges of people and merchandise between countries, epidemics have become an issue
of increasing importance, thus epidemiological surveillance is now a global procedure rather than a country-
based one. Combining information of country-specific datasets can now reveal epidemic spreading patterns
that were not possible to detect before, but phylogenetic algorithms are often hard to use and integrate in
analysis frameworks and tools.

There are hundreds of computational phylogenetics tools out there that are commonly used to address
this problem. Although they all try to achieve the same goal, which is to build a phylogenetic tree, they
all differ widely in the way they operate, the formats they support, and the criteria and algorithms they
implement. Due to those differences, the use of different tools may result in different phylogenetic trees [2]
from the same algorithm. There is not yet a library that tries to integrate all of the algorithms into just one
library, and that works on all platforms and can be integrated with other tools.

The process of phylogenetic analysis consists of parsing, assembling, and profiling the sequences, so that
they can then be processed by a distance calculation metric and an optional distance correction metric,
followed by an inference algorithm and multiple optional local optimizations [3]. This process is exposed in
projects like INNUENDO [4], which performs these operations in High Performance Computing (HPC) [5]
pipelines. However, most of them, like INNUENDO, do not compute the steps after the parsing, assembling
and profiling of sequences in the pipelines, because there is not yet a library that can be integrated to compute
those parts. Figure 1.1 demonstrates an abstraction of the workflow of the INNUENDO project, regarding
the High Performance Computing (HPC) pipeline placement.

1

High
Performance
Computing

Assembling

Profiling

Sequences

Parsing

Distance
Correction

Phylogenetic	Tree

Inference
Algorithm

Local
Optimization

Distance	Matrix

Distance	Matrix

Phylogenetic	Tree

Phylogenetic	Tree

Distance	Matrix

Distance
Calculation

Phylogenetic	Tree

Dataset

Figure 1.1: Workflow abstraction of the phylogenetic analysis in the INNUENDO project.

1.1 Objectives

The aim of this project is the development of a library of phylogenetic algorithms and related data
structures, with suitable common APIs and readily available documentation. The suitable common APIs
should allow the library to be easily extended to include other algorithms and formats. And they should
also allow the user to better explore the differences between algorithms through the outputs. This project
will rely on already existing algorithm prototypes and on ongoing research work at INESC-ID and iMM. The
resulting library will be tested and integrated in the INNUENDO project for large scale Next Generation
Sequencing (NGS) [6] data analysis and in tools such as PHYLOViZ [7].

2

1.2 Document Structure
This document starts by explaining, in the Background chapter, the concepts related to this project, in

terms of phylogeny, similarity, clustering, and optimization, and by then mentioning and comparing some of
the already existing related work. The Proposed Solution chapter defines the functional and non functional
requirements, as well as use cases for this project. It also contains the architecture definition and the
choice of technologies to be used. The Implementation chapter describes in more depth how the proposed
solution was implemented, focusing on the most important aspects of the implementation. The Experimental
Evaluation chapter analyzes the results obtained for the running time and memory usage of each algorithm
implementation. Lastly, the Final Remarks chapter summarizes the most important points of this thesis and
enumerates possible future work to extend and improve on this project. This project is publicly available at
https://github.com/Luanab/phylolib along with its documentation.

3

https://github.com/Luanab/phylolib

4

Chapter 2

Background

This chapter is mostly grounded on the fundamentals found in the article Large Scale and Dynamic
Phylogenetic Inference from Epidemic Data [8] by Marta Nascimento. For a more in-depth reading on the
topics that will be discussed here please refer to that article.

In biology, phylogenetics is the study of the evolutionary history and relationships among individuals or
groups of organisms (e.g. species, or populations). These relationships are discovered through phylogenetic
inference algorithms that evaluate observed heritable traits, such as DNA sequences or morphology under a
model of evolution. These models try to describe the evolution process of the species from which a sequence of
symbols changes into another set of traits, and differ in terms of the parameters used to describe the rates at
which one nucleotide replaces another during evolution. For instance, they are used during the calculation of
likelihood of a tree or to estimate the evolutionary distance between sequences from the observed differences.
This enables us to infer evolutionary events that happened in the past, and also provides more information
about the evolutionary processes operating on sequences.

2.1 Phylogenetic Analysis

Phylogenetic analysis aims at uncovering the evolutionary relationships between different species, or even
between individuals of the same species, to obtain an understanding of their evolution. The result of this
analysis is a phylogeny, which can be a phylogenetic tree or network, that is a diagrammatic hypothesis about
the history of the evolutionary relationships of a group of organisms. The tips of a phylogeny can be living
organisms or fossils, and represent the “end”, or the present, in an evolutionary lineage.

2.1.1 Analysis

Phylogenetic analysis has become central to understanding biodiversity, evolution, ecology, and genomes.
Phylogenetic trees are widely used to address this task and are reconstructed by several different algorithms.
They are a subset of phylogenetic networks, where nodes can only have one parent instead of two. However, a
phylogenetic tree will not always be enough to correctly represent the evolutionary history of a population and
sometimes a network representation will be more appropriate. Phylogenetic networks provide an alternative
to phylogenetic trees and may be more suitable for datasets whose evolution involves significant amounts of
reticulate events caused by hybridization, horizontal gene transfer, recombination, gene conversion or gene

5

duplication and loss. However, they are hard to analyze and thus phylogenetic trees are more used. Therefore,
this project will focus itself on phylogenetic trees and commonly used algorithms to reconstruct them.

A phylogenetic tree can be rooted or unrooted. A rooted tree is a dendrogram that indicates the common
ancestor, or ancestral lineage, of the tree. An example of this type of tree is present in Figure 2.1. An
unrooted tree however makes no assumption about the ancestral line, and does not show the origin or “root”
of the gene or organism in question. An example of this type of tree is present in Figure 2.2.

A B C D E
1.3 1.9

2 4.1

Figure 2.1: Example of a rooted phyloge-
netic tree.

A

B
C

D

E

10
5.3

9
7

11
5

12.5

Figure 2.2: Example of an unrooted phylo-
genetic tree.

2.1.2 Data Formats

There are two commonly used text formats for representing phylogenetic trees, which are Newick [9] and
Nexus [10].

Newick is a format where: each node is represented by an id and weight separated by a colon; siblings
are also separated by a comma; children are enclosed in parentheses; and internal nodes are represented like
any other node, except for the id that is omitted. Having in mind the following definitions:

Tree: the full input Newick Format for a single tree.
Subtree: a leaf node or an internal node and its descendants.
Leaf: a node with no descendants.
Internal: a node and its one or more descendants.
BranchSet: a set of one or more Branches
Branch: a tree edge and its descendant subtree.
Name: the name of a node.
Length: the length of a tree edge.

it is possible to define the full grammar rules for Newick in Extended Backus–Naur Form (EBNF) [11] as
follows:

Tree = Subtree , ";" | Branch , ";";
Subtree = Leaf | Internal;
Leaf = Name;
Internal = "(" , BranchSet , ")" , Name;
BranchSet = Branch | Branch , "," , BranchSet;
Branch = Subtree Length;
Name = empty | string;
Length = empty | ":" , number;

6

The Newick representation in Figure 2.3 for the tree presented in Figure 2.1 can be obtained by following
the previous rules.

(((A,B):1.3,(C,D):1.9):2,E):4.1;

Figure 2.3: Example of a Newick representation of Figure 2.1.

Nexus is a format that uses headers for more detailed information about each sequence, and the Newick
format for the tree representation. Each header starts with BEGIN [name]; and ends with END;. Figure 2.4
presents a Nexus representation of the same tree presented in Newick format in Figure 2.3.

BEGIN TAXA;
Dimensions NTax=5;
TaxLabels A B C D E;

END;

BEGIN CHARACTERS;
Dimensions NChar=20;
Format DataType=DNA;
Matrix
A ACATA GAGGG TACCT CTAAG
B ACATA GAGGG TACCT CTAAG
C ACATA GAGGG TACCT CTAAG
D ACATA GAGGG TACCT CTAAG
E ACATA GAGGG TACCT CTAAG

END;

BEGIN TREES;
Tree best=(((A,B):1.3,(C,D):1.9):2,E):4.1;

END;

Figure 2.4: Example of a Nexus representation of Figure 2.1.

2.2 Similarity
The goal of phylogenetic analysis is to discover relationships between species or populations by grouping

them based on some similarity criterion that underlies some evolution model.

2.2.1 Typing

The similarity criterion is applied to the strains given by the chosen typing method. The concept of
typing is designated as the identification of the genome strain. Typing methods based on sequences represent
strains by character states (e.g. adenine (A), cytosine (C), guanine (G), thymine (T), or gap in the case
of multiple alignment of nucleotide sequences). There are some formats for representing strains, although
this project will focus itself only on Multilocus Sequence Typing (MLST), Multiple-Locus Variable Number
Tandem Repeat Analysis (MLVA), FASTA, and Single Nucleotide Polymorphism (SNP).

In the FASTA format, each sequence is represented by a line with the greater-than symbol, followed by
a summary description of the sequence, and then another line with the actual sequence of character states.
An example of this format can be found in Figure 2.5.

7

> Sequence 1
GAAGCGAGTGACTTGGCAGAAACAGTGGCCAATATTCGTCGCTACCAGATGTTTGGCATC
GCGCGCTTGATTGGTGCGGTTAATACGGTTGTCAATGAGAATGGCAATTTAATTGGATAT
> Sequence 2
GAACCGAGTGACTTGGCAGAAACAGTGGCCAATATTCGTCGCTACCAGATGTTTGGCATC
GCGCGCTTGATTGGTGCGGTTAATACGGTTGTCAATGAGAATGGCAATTTAATTGGATAT

Figure 2.5: Example of two sequences in FASTA format.

The SNP format represents each sequence by a line with a sequence of 1’s and 0’s preceded by a number
that identifies the sequence. A value of 0 in any location represents the character state that was mostly found
on that location, while a 1 represents any other possible character state. An example of this format can be
found in Figure 2.6.

1 0100000111101010001000101010101001010100011101011000101010
2 1111010010101100100101010101001000001010010001010101010100

Figure 2.6: Example of two sequences in SNP format.

The MLST format is based on the comma-separated values (CSV) format with tab separators, where the
first line represents the headers, and the rest represent a sequence each. In this format, the first column is a
number that identifies the sequence, and the other columns are numbers that identify the alleles present in
specific loci of the DNA sequence. An example of this format can be found in Figure 2.7.

ST cox1 rnl
1 1 1
2 2 2
3 3 2

Figure 2.7: Example of three sequences in MLST format. Columns cox1 and rnl represent the loci of the
sequences, and the corresponding numbers represent the ids of the alleles observed in those loci.

The MLVA format is very similar to the MLST format, in the sense that both are represented by numbers
and each sequence corresponds to one line, with the difference that it does not have a headers line. An
example of this format can be found in Figure 2.8.

15 7 14
32 13 22
34 23 42

Figure 2.8: Example of three sequences in MLVA format.

2.2.2 Criterion

Phylogenetic trees can be built using distance matrix methods or character-state methods. Distance
matrix methods infer the relationship between individuals as the number of genetic differences between pairs
of sequences, whereas in character-state methods is used an array of character states. This project will focus
itself on distance-based analysis of DNA sequences.

8

The most commonly used similarity criterion between pairs of sequences is based on the Hamming dis-
tance [12], defined as the proportion of positions at which two aligned sequences A and B differ, as shown in
Equation 2.1.

Dij =
∑
l∈L

1{πl(i) ̸=πl(j)} (2.1)

However, this distance handles missing values as normal values. To handle missing data correctly, the
GrapeTree algorithm [13], explained further ahead, implements a directional measure based on normalized
asymmetric Hamming distances. This approach assumes that one of the sequences is the ancestor of the
other and treats missing data as deletions from the ancestor to the descendant. This measure is shown in
Equation 2.2, where 0 is assumed to be a missing value.

Dij =

∑
l∈L 1{(πl(i)̸=πl(j))∧(πl(j)̸=0)}∑

l∈L 1{πl(j) ̸=0}
(2.2)

The Hamming distance also does not take into consideration the number of mutations that occurred at
the same position and therefore it underestimates the true evolutionary distance. To rectify this, a correction
formula based on some model of evolution is often used. An example is the Jukes-Cantor model [14], that
assumes all substitutions are independent, sequence positions are equally subject to change, substitutions
occur randomly among the four types of nucleotides, and no insertions or deletions have occurred. This can
be translated into Equation 2.3, where Hij is the Hamming distance given by one of the previous equations.

Dij = −3

4
· ln

(
1− 4

3
·Hij

)
(2.3)

In the Jukes-Cantor model the mutant is chosen with equal probability among the three possible nu-
cleotides. Kimura later modified this equation to accommodate the fact that transition events (A ↔ G and
C ↔ T) occur at a faster rate than all other events. He provided a method for inferring evolutionary distance
in which transitions and transversions are treated separately. Equation 2.4 defines this model, where P is the
fraction of sequence positions differing by a transition and Q is the fraction of sequence positions differing
by a transversion.

Dij = −1

2
· ln

(
(1− 2 · P −Q) ·

√
1− 2 ·Q

)
(2.4)

Both models are unrealistic in terms of all nucleotides being expected to occur with the same frequency
in a random sequence, which is not likely to be the case for any sequence. Therefore, more sophisticated
models have been introduced to deal with subtle differences in substitution rates, such as the models from
Felsenstein [15] or Hasegawa [16].

An example of a distance matrix resultant from applying the Hamming distance in Equation 2.1, to the
MLST dataset in Figure 2.7 is presented in Figure 2.9.

D =

0 2 2
2 0 1
2 1 0

Figure 2.9: Example of a distance matrix resultant from applying the Hamming distance in Equation 2.1, to
the MLST dataset in Figure 2.7.

This distance matrix can be represented in an asymmetric format, also known as a square format [17],

9

similar to the one in the given example, with the difference that it is preceded by a line with the number of
profiles, which is equal to the number of lines and columns, and each line is preceded by the profile id. An
example of this format can be seen in Figure 2.10.

3
1 0 2 2
2 2 0 1
3 2 1 0

Figure 2.10: Example of a distance matrix in an asymmetric format.

It is also possible to further simplify the previous format for the given example, since the distance matrix
is symmetric, by removing duplicate and unnecessary distances, such as duplicate distances between the same
two profiles and unnecessary distances to the profiles themselves. This will result in a symmetric format, also
known as a lower-triangle format [17], similar to the previous format, but without the zeros and following
values, as seen in Figure 2.11.

3
1
2 2
3 2 1

Figure 2.11: Example of a distance matrix in a symmetric format.

2.3 Clustering

There are several algorithms that construct phylogenetic trees and they can all be seen as clustering
algorithms because they apply several clustering techniques in their approach. Clustering is an unsupervised
learning problem. Given a set of elements the goal is to group them in such a way that elements in the same
group (called a cluster) are more related (similar) to each other than to those in other groups (clusters). It is
a main task of exploratory data mining, and a common technique for statistical data analysis, used in many
fields, including machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics. Clustering can be divided into two types: hierarchical clustering
and flat (or partitioning) clustering.

Hierarchical clustering seeks to build a hierarchy of clusters. There are two techniques used to build the
hierarchy: agglomerative and divisive. Agglomerative is a “bottom up” approach where each element is in
its own cluster and, as the hierarchy moves up, a pair of clusters is merged into one. Divisive clustering is
a “top-down” approach where all elements are together in one cluster and, as the hierarchy moves down, a
cluster is split in two.

Flat clustering tries to build a group of clusters all independent from each other (i.e. there is no relation
among them) and can also be divided in two categories: hard and soft clustering. Hard clustering computes
a hard assignment, where each element is a member of exactly one cluster, while the latter computes a soft
assignment, where each element’s assignment is a probability distribution over all clusters (i.e. an element
can belong to several clusters).

10

This project will focus itself on hierarchical agglomerative clustering to build the hierarchy. This type
of clustering has been extensively used in bioinformatics and computational biology, namely in phylogenetic
inference within most phylogenetic tree reconstruction algorithms.

Distance-based hierarchical agglomerative clustering algorithms may be based on Globally Closest Pairs
(GCP), by starting with the most similar sequences, or Minimum Evolution (ME) principle, by trying to
minimize the total branch length of the tree. Algorithms based on ME can descend from Neighbour Joining
(NJ) or Minimum Spanning Tree (MST) algorithms.

Generalization All algorithms based on GCP, NJ or MST follow a general scheme that is represented in
Algorithm 1, which receives as input a distance matrix containing all pairwise distances between elements
and returns a phylogenetic tree. The only differences from this general scheme to the specific algorithms are
the selection criterion used in the selection step, the branch length formula used in the joining step, and the
dissimilarity formula used in the reduction step.

Algorithm 1 General scheme for hierarchical agglomerative clustering algorithms based on distance matrices.
Input: A distance matrix D over a set of elements S.
Output: A phylogenetic tree T over S.

Initialization: Initialize the cluster-set C by defining a singleton cluster Ci = {i} for every element i ∈ S.
Initialize output tree T = ∅.

Loop: While |C| > 1 do:

1. Selection: Select a pair of distinct clusters {Ci, Cj} ⊆ C of minimal dissimilarity under D.

2. Joining: Remove Ci, Cj from the cluster set C and replace them with Cu = {Ci ∪ Cj}. Calculate the
branch length for both elements, namely Diu and Dju and add Cu to the tree T .

3. Reduction: Calculate the dissimilarity Cuk for every Ck ∈ C ′ \ {Ci ∪ Cj}.

Finalization: Return the tree T .

2.3.1 Globally Closest Pairs

GCP based algorithms are widely used in phylogeny. The selection criterion for these algorithms is always
the same, that is, choose the smallest pairwise distance, and in case of a tie choose randomly. The branch
length formula used in the joining step also never changes and can be defined as Dij/2. The dissimilarity
formula used in the reduction step is where these algorithms differ.

The algorithm Single-linkage (SL) defines the dissimilarity between two clusters as the minimum value,
as show in Equation 2.5.

Duk = min{Dik, Djk} (2.5)

The algorithm Complete-linkage (CL) defines it as the maximum value, as show in Equation 2.6.

Duk = max{Dik, Djk} (2.6)

The algorithm Unweighted Pair Group Method with Arithmetic-mean (UPGMA) defines it as the average

11

dissimilarity, as shown in Equation 2.7.

Duk =
|Ci| ·Dik + |Cj | ·Djk

|Ci|+ |Cj |
(2.7)

The algorithm Unweighted Pair Group Method with Centroid (UPGMC) adjusts the UPGMA to the
cluster size, as shown in Equation 2.8.

Duk =
|Ci| ·Dik + |Cj | ·Djk

|Ci|+ |Cj |
− |Ci| · |Cj | ·Dij

(|Ci|+ |Cj |)2
(2.8)

The algorithm Weighted Pair Group Method with Arithmetic-mean (WPGMA) defines it by weighting
the two clusters in half, as shown in Equation 2.9.

Duk =
Dik +Djk

2
(2.9)

The algorithm Weighted Pair Group Method with Centroid (WPGMC) adjusts the WPGMA to the
cluster size, as shown in Equation 2.10.

Duk =
Dik +Djk

2
− Dij

4
(2.10)

2.3.2 Neighbour Joining

The Neighbor Joining algorithm is the most commonly used algorithm in phylogenetics and many variants
of this algorithm have been introduced over the years. While some try to optimize the formulas used by NJ
to better estimate the true and optimal tree, others try to improve its efficiency, both in terms of running
time and memory usage. Neighbour-Joining variants differ from one another in all three steps of the general
scheme.

This project will have in mind the first NJ algorithm, NJ by Saitou and Nei [18], its successor, NJ
by Studier and Keppler [19], and some of its variants, namely Unweighted Neighbour Joining (UNJ) [20],
BioNJ [21], Fast Neighbour Joining (FNJ) [22], and Relaxed Neighbour Joining (RNJ) [23].

Selection The selection criterion used in the selection step by Saitou and Nei is expressed by the minimum
dissimilarity, given by Equation 2.11.

Qij =
Dij

2
+

C∑
k=1

(Dik +Djk)

2 · (|C| − 2)
+

C∑
k=1

·
C∑
l=k

Dkl

|C| − 2
(2.11)

The previous criterion was then simplified into Equation 2.12 by Studier and Keppler. UNJ also relies on
this selection criterion.

Qij = (|C| − 2) ·Dij −
C∑

k=1

(Dik +Djk) (2.12)

Although the implementation by Saitou and Nei is the base algorithm, the implementation by Studier
and Keppler is the one that other NJ algorithms derive from. That is because the selection criterion used

12

by Studier and Keppler, besides being equal to the one used by Saitou and Nei, also has the advantage of
leading to a complexity of O(n3) instead of O(n5).

FNJ algorithm uses a similar criterion as the NJ by Studier and Keppler, but instead of choosing the
minimum in Q chooses from a different set, called visible set, of size O(n) that contains all visible pairs. A
pair (Ci, Cj) is visible if Cj is the minimum, as defined in Equation 2.13.

Cj = min

S∑

k=1,
k ̸=i

Qik

 (2.13)

Unlike NJ, that looks for a minimum among all transformed distances, RNJ looks for two taxa that have
minimal transformed distance between them as compared to their transformed distances to all other taxa.

BioNJ defines a simple selection criterion based on variances of evolutionary distance, that is expressed
by the minimum variance of the distance matrix, given by Qij = Dij/ls, where ls represents the sequence
length.

Joining The branch length formula used in the joining step by UNJ to calculate Diu and Dju is defined
by Equation 2.14 and Dju = Dij −Diu.

Diu =
Dij

2
+

C∑
k=1

|Ck| · (Dik −Djk)

2 · (|C| − |Cu|)
(2.14)

All other variants, redefine this formula to Equation 2.15, by setting |Ck| = 1 and replacing (|C| − |Cu|)

by
C∑

k=1

|Ck| which is then equal to (|C| − 2).

Diu =
Dij

2
+

C∑
k=1

(Dik −Djk)

2 · (|C| − 2)
(2.15)

Reduction In the reduction step is defined a general dissimilarity formula expressed by Equation 2.16,
where Diu and Dju are given by the branch length formula, and λ is the weight the variant assigns to each
branch.

Duk = λ · (Dik −Diu) + (1− λ) · (Djk −Dju) (2.16)

Studier and Keppler, Saitou and Nei, and FNJ define λ = 1/2, to provide both original branch lengths
an equal weight. Saitou and Nei however do not consider the newly computed branch lengths, thus defining
them as Diu = Dju = 0. Besides joining matrix D, FNJ also joins the visible set by removing the previously
selected visible pair and adding a new visible pair for Cu.

UNJ defines the weight λ as proportional to the number of elements contained in the clusters, as shown
in Equation 2.17, hence giving the same weight to each element.

λ =
|Ci|

|Ci|+ |Cj |
(2.17)

BioNJ defines the weight λ according to the variance of the element, as defined in Equation 2.18, where

13

λ ∈ [0, 1].

λ =
1

2
+

C∑
k=1,
k ̸=i,j

(Djk −Dik)

2 · (|C| − 2) ·Dij
(2.18)

2.3.3 Minimum Spanning Tree

Minimum Spanning Tree algorithms were developed following a graph theoretic approach. Therefore,
the problem of determining the minimal phylogenetic tree will be discussed regarding graph theory. A
phylogenetic tree is a graph that is connected but does not contain any cycles. A graph is said to be
connected if there exists at least one path between every pair of distinct points.

These algorithms have the particularity of skipping the reduction step as there is no need to update
the overall pairwise distances, and thus also not needing the branch length formula in the joining step.
There is a variety of algorithms based on this, however this project will focus itself on globally optimized
eBURST (goeBURST) [24] and GrapeTree.

Globally Optimized eBURST The goeBURST algorithm is a globally optimized implementation of the
eletronic Based Upon Related Sequence Types (eBURST) algorithm that identifies alternative patterns of
descent for several bacterial species, using the algorithm by Kruskal [25]. It implements the simplest model
for the emergence of clonal complexes, where a given sequence increases in frequency in the population, as a
consequence of a fitness advantage or of random genetic drift, becoming a founder clone in the population.
This increase is accompanied by a gradual diversification of that sequence, by mutation and recombination,
forming a cluster of phylogenetically closely related strains.

The diversification of the “founding” sequence is reflected in the appearance of Sequence Type (ST)
differing only in one housekeeping gene sequence from the founder sequence – Single Locus Variant (SLV).
Further diversification of those SLVs will result in the appearance of variations of the original sequence with
more than one difference in the allelic profile: Double Locus Variant (DLV), Triple Locus Variant (TLV),
and so on.

This algorithm defines its selection criterion as the smallest pairwise distance, and in case of a tie chooses
according to the highest number of SLVs, DLVs, TLVs, occurrence frequency, and then according to the lowest
id. There is a variant of goeBURST, named goeBURST Full MST, that extends the previously defined rule
up to nLV level, where n is equal to the number of loci in a strain. If n is defined as one, two or three, the
results of this algorithm will be equivalent to the results of goeBURST at the levels of SLV, DLV and TLV
respectively.

These two algorithms can also be performed dynamically, that is, they can be applied to an already built
phylogenetic tree by adding new sequences, instead of having to compute all sequences again to build the
phylogenetic tree. However, this project will focus itself only on the static versions.

GrapeTree GrapeTree is a novel MST algorithm that is better suited for handling missing data than clas-
sical MST algorithms. It uses the algorithm by Edmonds [26] and a directional measure based on normalized
asymmetric Hamming-like distances, to compute a directed minimum spanning tree.

The eBURST approach presumes that a clonal complex (lineage) is founded by a founder genotype and
that genetic variants of that founder reflect the progressive accumulation of additional variations over time.
A further implicit belief is that the number of variants decreases with distance from the founder genotype,

14

such that the founder is equated with the central genotype with the greatest number of single locus variants,
and edges between nodes are ordered based on their allelic distances. In case of a tie for directionality of
connections, the founder status is assigned to the node with the greater number of SLVs, DLVs, TLVs, and/or
number of strains assigned to that ST.

At the levels of resolution of core genes that are present in most isolates of a species, core genome
MLST (cgMLST), the founder genotype may not be present in a comparison, which renders the eBURST
model inappropriate for tie-breaking. Instead of depending on the preconceived properties of a theoretical
founder genotype, GrapeTree simply chooses central nodes between multiple co-optimal branches on the basis
of the harmonic mean of allelic distances. A central node is defined as the genotype for any given population
that has the smallest average allelic distance to all other genotypes in the same population. The selection
criterion for the GrapeTree algorithm is defined as the smallest pairwise distance. However in case of a tie,
it is defined as the minimum harmonic mean of the allelic distances rather than an arithmetic mean, to give
higher weights to sequences with smaller allelic distances to other sequences. Equation 2.19 showcases this
harmonic mean.

Qi =
|C| − 1
C∑

j=1,
j ̸=i

D−1
ij

(2.19)

Edmonds algorithm [26] is used as the base MST algorithm to attempt to minimize the sum of edge
lengths in the tree. However, the resulting tree does not necessarily represent true phylogenetic relationships
between sequences, because allelic distances do not always correlate with divergence time. Therefore, a Local
Branch Recrafting (LBR) optimization is subsequently implemented to account for these discrepancies. This
local optimization will be further discussed in the next section.

2.4 Optimization

The purpose of a local optimization is to minimize the total weight of the given phylogenetic tree. Every
clustering algorithm that uses a dissimilarity formula, which is both convex and commutative, can be locally
optimized. A dissimilarity formula is convex if the distance between any cluster Ck to the new cluster
Cu, where Cu = Ci ∪ Cj , lies between the distance from that cluster Ck to Ci and Cj . And it is said to
be commutative if given four arbitrary clusters {C1;C2;C3;C4}, the dissimilarity matrix obtained by first
joining {C1;C2} and then joining {C3;C4} is equal to the dissimilarity matrix obtained by first joining
{C3;C4} and then joining {C1;C2}.

Excluding NJ and variants, all of the phylogenetic algorithms mentioned before have a commutative and
convex dissimilarity formula. NJ algorithms cannot assure the convexity property, because their dissimilarity
formula depends on the new branch lengths calculated for the two joined elements, and the formula used
to compute it does not guarantee convexity, thus leading to possible negative branch lengths. Although the
dissimilarity formula in MST algorithms is nonexistent, it is still considered as convex and commutative.
However, because these algorithms already result in the phylogenetic tree with the minimum distances,
applying any local optimization to these trees will result in a tree of equal weight.

Generalization Local optimizations tend to follow a general scheme, in which they differ in the selection
criterion used to select the next edge to substitute, and the joining criterion used to select the new edges of
the phylogenetic tree. This general scheme is portrayed in Algorithm 2.

15

Algorithm 2 General scheme for local optimization algorithms.
Input: A phylogenetic tree T over a set of elements S.
Output: The phylogenetic tree T .

Initialization: Initialize the set E with the edges of the tree T .

Loop: While |E| > 0 do:

1. Selection: Select an edge (u → v) of the set E and remove it from the tree T , dividing it into two
sub-trees Tu (containing u) and Tv (containing v).

2. Joining: Find two vertices w and z that best connect the two sub-trees by an edge (w → z).

3. Reduction: Remove the edge (u → v) from E and add the edge (w → z) to T .

Finalization: Return the tree T .

Local Branch Recrafting Despite the fact that MST algorithms already result in the phylogenetic tree
with the minimum distances, the resulting tree may not necessarily represent true phylogenetic relationships
between strains. That may happen as a result of allelic distances not always correlating with divergence
time. For that reason, the GrapeTree algorithm still applies a local optimization over it, named LBR,
which depends on the likelihoods of a contemporary model versus an ancestor-descendent model. Its joining
criterion consists of finding two nodes that have the minimum harmonic distance if the contemporary model
has a higher or equal likelihood to the ancestor-descendent model. Or, otherwise that have the minimum
dissimilarity in relation to u and v respectively. Its selection criterion consists of selecting the shortest edge
of the set, and there is an additional step in the reduction to add the edge chosen by the joining criterion to
the set E, if it does not have the minimum dissimilarity between all edges of the tree.

Rearrangement Measures Local optimizations can be based on transformation processes usually found
in tree comparison measures. Such measures are seldom used in practice for large studies, as they are
expensive to calculate if the trees are dissimilar. However, in the context of this project, they will be
useful as they provide multiple alternatives to transforming a tree. These rearrangement measures include
Subtree Pruning and Regrafting (SPR) [27], Nearest Neighbor Interchange (NNI) [28], and Tree Bisection
and Reconnection (TBR) [29]. All of these share the same selection criterion that consists of selecting a
random edge of the set. The SPR measure defines its joining criterion as the selection of the u vertex, and
a new vertex w resulting from the subdivision of an edge of Tv and the suppression of the vertex v from the
tree. The NNI measure is equivalent to the SPR where the vertex v and the new vertex w share a neighbour.
The TBR measure is similar to the SPR, with the exception that it joins instead of the vertex u, a new vertex
z resulting from the subdivision of an edge of Tu and the suppression of the vertex u from the tree.

2.5 Related Work
There are hundreds of computational phylogenetics tools out there that are commonly used in comparative

genomics, cladistics, and bioinformatics. Although they all try to achieve the same goal, which is to build a
phylogenetic tree, they all differ widely in multiple aspects.

These tools may represent phylogenetic trees in different formats, such as Newick, Nexus, or even a format
of their own. They may even deal with different input formats, such as FASTA, SNP, MLST, MLVA, among
others. They may also have different implementations, producing different phylogenetic trees by relying on

16

a set of algorithms for estimating phylogenies, such as Neighbour Joining, Maximum Parsimony, Globally
Closest Pairs, Bayesian phylogenetic inference, and Maximum Likelihood. They can also rely on several
different distance calculation and correction formulas, such as Hamming, Jukes-Cantor, Kimura, and so on.
Some tools may provide local optimization algorithms, such as LBR, SPR, NNI, and TBR, while others may
not provide any.

These tools can have two different purposes. Some are meant to be used by other tools, in the format
of a library or command-line application. While others are created to be used directly by the final user, as
a desktop or web application, which may be free or paid. They can be implemented in different languages
and used in different platforms or even be specific to one platform. However, besides differing in many
aspects, these tools may also share some unappealing aspects, like not being easily integrated into existing
phylogenetic analysis workflows, not supporting a common API between algorithms, and not always providing
efficient implementations.

Some examples of the most well-known libraries are PHYLIP [17], PhyML [30], RAxML [31], PAUP* [32],
MrBayes [33] and MEGA [34]. And, some examples of the most frequently used desktop and web applications,
that are free, are PHYLOViZ and PHYLOViZ Online. The major differences between these tools, regarding
the phylogenetic analysis workflow for distance matrix based algorithms, can be seen in Table 2.1. In this
table, the first and last columns represent the input and output formats supported by each tool, the columns
with a number between parentheses represent the four steps of the phylogenetic analysis workflow discussed
in this chapter, and the second to last column refers the other four columns and represents the steps of the
workflow that provide an output file.

2.6 Discussion
The phylogenetic analysis workflow can be summarized into four consecutive steps, the distance cal-

culation, distance correction, inference algorithm, and local optimization steps. The first step consists of
producing a distance matrix from a dataset, including several sequences, through a distance calculation
method, such as Hamming, GrapeTree, or Kimura, that calculates the distances between each pair of se-
quences of the dataset. The dataset can be represented in several formats, including MLST, MLVA, FASTA,
and SNP. The second step takes a distance matrix and corrects each distance using a correction formula,
such as Jukes-Cantor. This step is optional, thus it may be skipped. The third step transforms a distance
matrix into a phylogenetic tree by running a clustering algorithm, such as goeBURST, GrapeTree, UPGMA,
and NJ by Studier and Keppler. The phylogenetic tree can be represented in several formats, including
Newick and Nexus. And the fourth step takes a phylogenetic tree and tries to locally optimize it through a
local optimization algorithm, such as LBR. This step is also optional, thus it may be skipped, however it
may also be applied several times.

Despite there being many libraries and applications currently available and dedicated to the implemen-
tation of the phylogenetic analysis workflow, they all differ widely in many aspects and were not created
with integration and extensibility in mind, but instead for a specific purpose. For that reason, it would
be beneficial to have a tool that is capable of easily integrating other formats and algorithms into just one
common place.

17

To
ol

Fe
at
ur
e

In
pu

t
Fo

rm
at

D
ist

an
ce

C
al
cu
la
tio

n
(1
)

D
ist

an
ce

C
or
re
ct
io
n
(2
)

In
fe
re
nc
e

A
lg
or
ith

m
(3
)

Lo
ca
l

O
pt
im

iz
at
io
n
(4
)

O
ut
pu

t
Pr

oc
es
sin

g
O
ut
pu

t
Fo

rm
at

PH
Y
LI
P

PH
Y
LI
P

H
am

m
in
g

Fi
tc
h-
M
ar
go
lia

sh
U
PG

M
A

N
J
by

Sa
ito

u
&

N
ei

R
ob

in
so
n-
Fo

ul
ds

(1
)

(2
)

(3
)

(4
)

N
ew

ick

Ph
yM

L
PH

Y
LI
P

N
ex
us

H
am

m
in
g

JC
69

K
80

F8
1

F8
4

H
K
Y
85

T
N
93

G
T
R

Bi
oN

J
N
N
I

SP
R

(3
)

(4
)

N
ew

ick

R
A
xM

L
PH

Y
LI
P

FA
ST

A
H
am

m
in
g

JC
69

K
80

-
N
N
I

(3
)

(4
)

N
ew

ick

PA
U
P*

N
ex
us

H
am

m
in
g

H
K
Y
85

U
PG

M
A

N
J
by

Sa
ito

u
&

N
ei

-
(3
)

N
ex
us

M
rB

ay
es

N
ex
us

H
am

m
in
g

JC
69

K
80

F8
1

H
K
Y
85

G
T
R

Bi
oN

J
N
J
by

Sa
ito

u
&

N
ei

-
(3
)

N
ex
us

M
EG

A
M
EG

A
H
am

m
in
g

Ju
ke
s-
C
an

to
r

Ta
jim

a-
N
ei

K
im

ur
a
2-
Pa

ra
m
et
er

Ta
m
ur
a
3-
Pa

ra
m
et
er

Ta
m
ur
a-
N
ei

Lo
g-
D
et

U
PG

M
A

N
J
by

Sa
ito

u
&

N
ei

-
(3
)

N
ew

ick

PH
Y
LO

V
iZ

M
LS

T
M
LV

A
SN

P
H
am

m
in
g

-

go
eB

U
R
ST

C
L SL

U
PG

M
A

W
PG

M
A

N
J
by

Sa
ito

u
&

N
ei

N
J
by

St
ud

ie
r
&

K
ep
pl
er

-
(3
)

C
us
to
m

JS
O
N

PH
Y
LO

V
iZ

O
nl
in
e

M
LS

T
M
LV

A
FA

ST
A

N
ew

ick

H
am

m
in
g

-
go

eB
U
R
ST

-
(3
)

C
us
to
m

JS
O
N

Ta
bl
e
2.
1:

M
aj
or

di
ffe

re
nc
es

be
tw

ee
n
so
m
e
of

th
e
m
os
t
we

ll-
kn

ow
ph

yl
og
en
et
ic

to
ol
s,

re
ga
rd
in
g
th
e
ph

yl
og
en
et
ic

an
al
ys
is

wo
rk
flo

w
.

18

Chapter 3

Proposed Solution

This chapter depicts the functional and non functional requirements of the proposed solution, as well as
its use cases. It also explains the architecture for the proposed solution and the technologies to be used.

3.1 Requirements
The proposed solution for this project revolves around the development of a command line application,

titled PhyloLib, that obeys to several functional and non functional requirements, but whose overall require-
ment is to enable the functioning of the phylogenetic analysis workflow represented in Figure 3.1.

Distance
Correction

Phylogenetic	Tree

Inference
Algorithm

Local
Optimization

Distance	Matrix

Distance	Matrix

Phylogenetic	Tree

Phylogenetic	Tree

Distance	Matrix

Distance
Calculation

Phylogenetic	Tree

Dataset

Figure 3.1: Phylogenetic analysis workflow.

19

Ultimately, this solution should provide implementations for some of the concepts mentioned in the
previous chapter, such as some of the existing phylogenetic and optimization algorithms, distance calculation
and correction formulas, and dataset, matrix and tree formats.

3.1.1 Functional

In terms of functional requirements, to comply with the previous workflow, this project should:

1. Support reading from a file datasets in different formats, such as MLST, MLVA, SNP, and FASTA.

2. Provide different distance calculation methods to produce a distance matrix, such as Hamming, Grape-
Tree and Kimura.

3. Support reading from and writing to a file distance matrices in different formats, such as symmetric
and asymmetric.

4. Allow rectifying a distance matrix with different distance correction methods, such as Jukes-Cantor.

5. Provide different phylogenetic inference algorithms based on distance matrices to produce a phylogenetic
tree, such as SL, CL, UPGMA, UPGMC, WPGMA, WPGMC, goeBURST, Edmonds, NJ by Saitou
and Nei, NJ by Studier and Keppler, and UNJ.

6. Support reading from and writing to a file phylogenetic trees in different formats, such as Newick and
Nexus.

7. Allow optimizing a phylogenetic tree multiple times with different local optimization algorithms, such
as LBR.

8. Enable executing only specific operations of the workflow, or all of them, at once.

3.1.2 Non Functional

The non functional requirements to have in mind during the development of the project state that the
library should:

1. Provide high portability and integration, by being able to run in most environments and be integrated
with other applications.

2. Provide high extensibility, by exposing an interface that is easily extensible to more methods, algorithms
and formats.

3. Be highly reusable, by having minimal duplicated code and reusing as much existing code as possible.

3.1.3 Use Cases

Being a command line application, each call to the library should receive its commands through the
Command Line Interface (CLI) arguments. All commands should be case insensitive and separated by a
colon. Each individual command should be represented by its name, type, and options, separated by a space.
Each option should be optional and represented by its name preceded by two dashes, or by a letter preceded
by a dash, and followed by an equals sign and corresponding value.

20

The available commands should be distance, correction, algorithm, and optimization, each respec-
tively defining an operation in the workflow. All of these commands should be optional and only be declared
at most once, except for optimization that should be able to be declared multiple times. Also, the order
in which the commands are presented should not matter, except for optimization that can be declared
multiple times. Lastly, as seen in the workflow in Figure 3.1, every combination of commands should be
possible, except if it includes optimization and excludes algorithm, while still including distance and/or
correction.

The type and options declared in a command should specify its execution, namely the type should identify
the implementation for that command, and the options should specify details for that implementation, for
example, if the command is algorithm then the type may be goeburst and an option may be --lvs. Each
option should not be declared more than once for a command, and the order in which they are declared
should not matter. Besides the custom options that may be used by each command and specific type, such
as --lvs or -l, an option that may be declared for every command is --out or -o, and it defines the output
file for the command. Other options that a command may or may not use, depending on its input needs, are
--dataset, --matrix, and --tree, or -d, -m, and -t, each respectively defining a data type in the workflow.
These three options define input files for the commands, and should be declared if there is no value for that
data type in the current context, that is, if the declared commands, that are previous to this one in the
workflow, will not provide a value for that data type. All of these file options, including --out, should be
represented by a format name followed by a colon and a file location.

This project should include a separate use case for each operation in the workflow, as demonstrated in
Figure 3.2. In this figure, an include relation means the included use case is not optional, and therefore is
also applied when the base use case is applied. And, an extend relation means the extending use case might
also be applied when the extended use case is applied, making it optional. In this case, the extend relations
are applied if an input, in case of a read use case, or an output, in case of a write use case, is specified.

Library

User	/	Application

Calculate
Distances

Correct
Distances

Algorithm
Inference

Optimize
Locally

Read
Dataset

Read
Matrix

Write
Matrix

Read
Tree

Write
Tree

Keys: Actor Use
Case Associate Include Extend

Figure 3.2: Use cases of the project.

An example use case is to compute the goeBURST algorithm with TLVs and the output in Newick to a file

21

tree.txt, using the Hamming distance, with the dataset as input in SNP format from a file dataset.txt,
and the LBR optimization, with the output in Newick to a file out.txt, as follows:

phylolib algorithm goeburst --lvs=3 --out=newick:tree.txt :
distance hamming --dataset=snp:dataset.txt : optimization lbr --out=newick:out.txt

3.2 Architecture

The architecture of this project will be decomposed into four operations, the distance calculation, distance
correction, inference algorithm, and local optimization, as shown in the decomposition view of the main
architecture in Figure 3.3.

PhyloLib

Inference
Algorithm

Distance
Correction

Local
Optimization

Distance
Calculation

Figure 3.3: Decomposition view of the main architecture.

These four operations will be used in accordance with the workflow established in the Requirements
section. And they will be translated respectively into four components, the Distance, Correction, Algorithm,
and Optimization, as shown in the generalization view of the main architecture in Figure 3.4. The use of these
components will be defined by the user, through the declaration of the commands distance, correction,
algorithm, and optimization, respectively.

Command

AlgorithmCorrection OptimizationDistance

Figure 3.4: Generalization view of the main architecture.

This architecture will also be decomposed into two additional operations, the input reading and the output
writing, to separate those responsibilities from the previous four operations. They will be translated into
two components, the Reader and Writer, and they will be able to define the parsing for the different data
types. These data types will be specified by each implementation of the Reader and Writer, namely Dataset,
Matrix, and Tree, as shown in the generalization view of the reading and writing in Figure 3.5. All of these
components implement the Reader and Writer, except for the Dataset, that only implements the Reader,
because there is no output of type dataset in the workflow. The use of these components will be defined
by the user, through the declaration of the options --out, --dataset, --matrix, or --tree in each of the
previously mentioned commands.

22

Reader

Matrix

Writer

Dataset Tree

Figure 3.5: Generalization view of the reading and writing architecture.

The Dataset, Matrix, and Tree components will be called internally by the Distance, Correction, Algo-
rithm, and Optimization components, in accordance with the uses view of the architecture in Figure 3.6.
Note that, this figure only represents the input and output operations that can be observed in the workflow,
however each specific type of command may require additional inputs thus requiring uses relations that may
not be visible in this figure.

AlgorithmCorrection OptimizationDistance

Dataset Matrix Tree

Figure 3.6: Uses view of the architecture.

3.2.1 Distance Calculation

The Distance component will be responsible for calculating the distances between profiles in a dataset into
a distance matrix, based on a specific distance calculation method. This distance calculation method will be
specified by each implementation of the Distance component, namely Hamming, GrapeTree, and Kimura, as
shown in the generalization view of the Distance component in Figure 3.7. The use of these implementations
will be defined by the user, through the definition of the type for the command distance, which can be
respectively hamming, grapetree, or kimura.

Distance

GrapeTreeHamming Kimura

Figure 3.7: Generalization view of the distance calculation component.

23

3.2.2 Distance Correction

The Correction component will be responsible for rectifying a distance matrix, based on a specific distance
correction formula. This distance correction formula will be specified by each implementation of the Correc-
tion component, namely Jukes-Cantor, as shown in the generalization view of the Correction component in
Figure 3.8. The use of these implementations will be defined by the user, through the definition of the type
for the command correction, which can be respectively jukescantor.

Correction

Jukes-Cantor

Figure 3.8: Generalization view of the distance correction component.

3.2.3 Inference Algorithm

The Algorithm component will be responsible for processing the distance matrix into a phylogenetic
tree, through a specific distance matrix algorithm. This distance matrix algorithm will be specified by each
implementation of the Algorithm component, namely SL, CL, UPGMA, UPGMC, WPGMA, WPGMC,
goeBURST, Edmonds, NJ by Saitou and Nei, NJ by Studier and Keppler, and UNJ, as shown in the
generalization view of the Algorithm component in Figure 3.9. The GCP and NJ implementations will be
aggregated into categories, specifically Globally Closest Pairs and Neighbour Joining, due to the similarities
mentioned in the Background section. The use of these implementations will be defined by the user, through
the definition of the type for the command algorithm, which can be respectively sl, cl, upgma, upgmc,
wpgma, wpgmc, goeburst, edmonds, saitounei, studierkeppler, or unj.

Algorithm

Globally
Closest	Pairs

Neighbour
JoininggoeBURST

Saitou	and	Nei

Edmonds

UPGMA Studier	and
Keppler

UPGMC

WPGMASL

UNJCL WPGMC

Figure 3.9: Generalization view of the inference algorithm component.

24

3.2.4 Local Optimization

The Optimization component will be responsible for optimizing the distances in a phylogenetic tree,
through a local optimization algorithm. This local optimization algorithm will be specified by each imple-
mentation of the Optimization component, namely LBR, as shown in the generalization view of the Opti-
mization component in Figure 3.10. The use of these implementations will be defined by the user, through
the definition of the type for the command optimization, which can be respectively lbr.

Optimization

LBR

Figure 3.10: Generalization view of the local optimization component.

3.2.5 Dataset Parsing

The Dataset component will be responsible for reading a dataset from a specific file location in a specific
format. This format will be specified by each implementation of the Dataset component, namely FASTA,
SNP, and ML, as shown in the generalization view of the Dataset component in Figure 3.11, where the ML
implementation corresponds to the MLVA and MLST formats. The use of these implementations will be
defined by the user, through the definition of the format for the file options --dataset and --out, which
can be respectively fasta, snp, or ml.

MLSNP

Dataset

FASTA

Figure 3.11: Generalization view of the dataset parsing component.

3.2.6 Distance Matrix Parsing

The Matrix component will be responsible for reading and writing a distance matrix from and to a specific
file location in a specific format. This format will be specified by each implementation of the Matrix com-
ponent, namely Symmetric, and Asymmetric, as shown in the generalization view of the Matrix component
in Figure 3.12. The use of these implementations will be defined by the user, through the definition of the
format for the file options --matrix and --out, which can be respectively symmetric or asymmetric.

25

Asymmetric

Matrix

Symmetric

Figure 3.12: Generalization view of the distance matrix parsing component.

3.2.7 Phylogenetic Tree Parsing

The Tree component will be responsible for reading and writing a phylogenetic tree from and to a specific
file location in a specific format. This format will be specified by each implementation of the Tree component,
namely Newick, and Nexus, as shown in the generalization view of the Tree component in Figure 3.13. The
use of these implementations will be defined by the user, through the definition of the format for the file
options --tree and --out, which can be respectively newick or nexus.

Newick

Tree

Nexus

Figure 3.13: Generalization view of the phylogenetic tree parsing component.

3.3 Technologies
The choice of programming language for this project is heavily influenced by the fact that most algorithms

are already implemented in Java and JavaScript. However, the choice ends up being Java, due to its portability
that enables it to be run in most platforms, as well as its performance capabilities regarding parallelization
and multi-threading that JavaScript does not possess. Java is a set of computer software and specifications,
that provides a system for developing application software and deploying it in a cross-platform computing
environment. Its syntax borrows heavily from C and C++, but object-oriented features are modeled after
Smalltalk and Objective-C. Also, memory management in Java is handled through integrated automatic
garbage collection performed by the Java Virtual Machine (JVM).

3.4 Discussion
The proposed solution for this project boils down to the development of a command line application

that conforms to the phylogenetic analysis workflow and is highly performant, extensible, reusable, and
portable. It should enable reading datasets, distance matrices, and phylogenetic trees from files, calculating
and correcting a distance matrix, inferring and locally optimizing a phylogenetic tree, and writing distance
matrices and phylogenetic trees to files.

26

Chapter 4

Implementation

This chapter describes more in depth the implementation details that were required to implement the
proposed solution of this project. To help better comprehend the implementation, this chapter also provides
the Unified Modeling Language (UML) class diagrams for each package of the project.

The proposed solution was implemented bearing in mind an agile methodology, and is publicly available
at https://github.com/Luanab/phylolib as a library along with its issues, milestones, and Javadoc docu-
mentation. Aside from the structure related milestones and issues, each of the milestones can be translated
into a command or data type, while each of the issues can be translated into an implementation of that
command or data type. For testing purposes, the library is hosted in a server as a Docker image.

4.1 Structure
The starting point and main logic of this project is located in the Main class, where the whole phylogenetic

analysis workflow is connected. This class is responsible for joining all of the main concerns of the project in
one place, namely the CLI argument parsing, mapping of arguments to commands and data parsers through
reflection, workflow setup, exception handling, and logging. The workflow setup includes the specification
of the order of execution of the commands and their respective data parsing components. Every file of
this project is located inside the pt.ist.phylolib package, which is composed of six main parts, the cli,
reflection, exception, logging, data, and command packages.

4.1.1 Arguments

The CLI argument parsing is focused inside the Arguments class in the cli package, which decomposes
the arguments into commands and parameters. It is called by the Main class at the beginning of the workflow
to ensure that argument related issues are detected beforehand, that is, before the execution of any command.
The Arguments class returns to the Main class the correspondence between commands and its parameters
through a map of objects of the Command and Parameters classes. The Command class is an enum that defines
all of the possible commands and their ability to be repeated in an execution of the workflow. The objects of
the Parameters class serve as the container of the received type and options for a command. The received
options themselves are stored in objects of the Options class, as a map of objects of the Option and String
classes. The latter contains the value for the option, while the former represents the option itself. The
Option class is an enum that defines all of the possible options and their corresponding character alias, value

27

https://github.com/Luanab/phylolib

format, and optional default value for when the option is not received but is necessary. The value format
itself is represented by the Format class that is an enum, which defines all of the existing string formats for
the options as regular expressions. Lastly, the Data class is an enum responsible for connecting each data
parser to an input option. The UML class diagram that represents this package can be seen in Figure 4.1.

FILE
NATURAL
DISTANCE

booleanmatches(String)
Format[]values()

FormatvalueOf(String)

Format

DATASET
MATRIX
TREE

StringtoString()
Optionoption()

Constructor<?>type(String)
Data[]values()

DatavalueOf(String)

Data

Parameters(Constructor<?>, Options)

Constructor<?>type()
Optionsoptions()

Parameters

voidput(String)
Set<Option>keys()

Stringremove(Option)

Options

Argumentsparse(String[])

Arguments

OUT
DATASET
MATRIX
TREE
LVS

Optionget(String)
StringtoString()

Formatformat()
String_default()

Option[]values()

OptionvalueOf(String)

Option

DISTANCE
CORRECTION
ALGORITHM
OPTIMIZATION

Commandget(String)
StringtoString()

Constructor<?>type(String)
Command[]values()

CommandvalueOf(String)

booleanrepeatable

Command

«create»

1
1

*

1

1

1

1
1

«create»

Figure 4.1: UML class diagram of the cli package.

28

Exceptionally, if the first argument is the command help, then the Arguments class ceases to continue
parsing the arguments and immediately returns to the Main class to print the usage message. Otherwise, if
no arguments are provided to this library, a received command does not exist or is invalidly repeated, or a
command type is not provided or is invalid, then the command parsing stops and an exception is thrown.

4.1.2 Reflection

The mapping of arguments to commands and data parsers is achieved through reflection, with the help
of the Reflections class from the org.reflections external package, and the Constructor and Modifier
classes from the java.lang.reflect built-in Java package. This concern is wrapped up in the Types class of
the package reflection of this project. In sum, this class provides a method that retrieves a map with all of
the names and constructors of the classes that extend a given class. It only looks inside the pt.ist.phylolib
package though, to avoid uselessly searching in other dependencies, therefore new implementations must
always be defined inside it. The UML class diagram that represents this package can be seen in Figure 4.2.

Map<String, Constructor<?>>get(Class<?>)

Types

Figure 4.2: UML class diagram of the reflection package.

This functionality is used by the Command and Data enums from the cli package, to dynamically find all of
the implementations of the selected commands and data types, and then execute the selected implementation.
If the user, for example, tries to execute the algorithm command with the type upgma, then the Command
enum will use this functionality to find all classes that extend the Algorithm class, and then from these
execute the UPGMA class.

This approach provides an easy way to extend commands and data types, as it becomes simple to include
a new implementation, by either adding it inside the project and compiling again, or just adding it to the
classpath, without having to touch any other part of the code. Either way, to execute any implementation
of a command or data type it is expected that the name is provided without the package in the command
line arguments, so the arguments can be more concise and the user does not have to know about the location
of the implementation inside the project. This, however, creates one restriction to all implementations, that
is, there should never be any two implementations of the same command or data type with the same name,
regardless of the package, as the project will select one of the two implementations randomly.

4.1.3 Exceptions

The exception handling is done at the Main class level, where the exceptions are distinguished between
user input related and internal issues, and they are logged accordingly. The reason for this is that user input
related issues are caused by some faulty user input and thus can be solved by the user alone. While the
internal issues are more complex and were not accounted for in the development of this project, and thus
should be solved by the developer and not the user itself.

A custom exception class was defined specifically for each user related issue. These classes are all
present in the exception package and extend the ArgumentException custom class. Aside from the
MissingInputException class, all of the other exception classes, namely the InvalidCommandException,
InvalidTypeException, MissingTypeException, NoCommandException, and RepeatedCommandException
classes, can only be thrown during the argument parsing phase. Meanwhile, the MissingInputException

29

can only be thrown at the start of the execution of each command, because only then can it be established
if there is a value for that input, be it either from the arguments or the previously executed commands. The
UML class diagram that represents this package can be seen in Figure 4.3.

InvalidCommandException(String)

InvalidCommandException

NoCommandException()

NoCommandException

InvalidTypeException(String, String)

InvalidTypeException

ArgumentException(String)

ArgumentException

MissingInputException(String)

MissingInputException

RepeatedCommandException(String)

RepeatedCommandException

MissingTypeException(String)

MissingTypeException

Figure 4.3: UML class diagram of the exception package.

4.1.4 Logging

There are log messages spread throughout the whole workflow, namely in the exception handling, the
argument parsing, the command execution, and the data parsing, and together they all provide some useful
information to the user, regarding the state of the execution of the workflow.

These messages are all logged through the same place, which is the Log class from the log package of
the project. The main purpose of this class is to setup the logs according to a given configuration, and
provide different types of log messages for different purposes. To do so, it wraps the Java built-in logger by
using the Level, LogManager, and Logger classes from the java.util.logging built-in Java package. The
configuration of the logs is given by the values inside the logging.properties file in the resources of the
project. Some of the configurations available here include the handler, level, and format of the messages.

Each type of log message was translated into a different method inside the Log class, namely the info,
warning, error, and exception methods. The info method is used to provide some workflow progression
information, that is useful for the user to understand the state of the current execution. The warning method
is used for potential user input mistakes, that are not crucial to the progression of the workflow, since they
can be ignored, such as duplicated, invalid or unused parameters. The error method is only used in the
Main class, and is intended for logging only user input related issues that crucial to the progression of the
workflow. Finally, the exception method is only used in the Main class as well, however its sole purpose is
to log internal issues that need to be looked at by the developer, thus providing a stack trace of the thrown
exception. The UML class diagram that represents this package can be seen in Figure 4.4.

30

voidinfo(String, Object...)
voidwarning(String, Object...)
voiderror(String, Object...)
voidexception(Exception)

Log

Figure 4.4: UML class diagram of the logging package.

4.2 Data

The phylogenetic analysis workflow deals with three main types of data, namely datasets, distance matri-
ces, and phylogenetic trees. Each step of the workflow always returns data of one data type, but may receive
data of one or more data types. For that reason, instead of defining a different interface for each step, a
common context object is used by the Main class to aggregate all of the data and share it between all steps.
That object is defined as the Context class in the data package, and it is responsible for storing the current
values of each data type during each execution of the workflow.

Each of the data types may be read from or written to a file, except for the dataset that can only be
read from a file, as it is never an output of any step. This means that there are specific reading and writing
concerns for certain data types in each step of the workflow. To ensure reusability and avoid repeated code,
the reading and writing portions of the project are separated from the data parsing. The former are enclosed
in two specific interfaces inside the data package, namely the IReader and IWriter interfaces. Whereas
the latter are enclosed in specific packages and classes for each data type, and include the parsing of files
into data and vice versa. These are the DatasetParser, MatrixParser, and TreeParser classes from the
data.dataset, data.matrix, and data.tree packages respectively, which implement the respective parsing
methods of those interfaces. The UML class diagram that represents this package can be seen in Figure 4.5.

Tread(Options, T, Data)
Tparse(Stream<String>)

IReader

voidwrite(Options, T, Data)
Stringparse(T)

IWriter

DatasetgetDataset(Options)
MatrixgetMatrix(Options)

TreegetTree(Options)
voidsetMatrix(Options, Matrix)
voidsetTree(Options, Tree)

Context

File(Object, Path)

Fileget(String, Data)
Objectprocessor()

Pathpath()

File

TreeParserMatrixParser Datasetparse(Stream<String>)
voidinit(Iterator<String>)

Profileparse(Iterator<String>)

DatasetParser

Figure 4.5: UML class diagram of the data package.

31

The File class of this package is responsible for mapping the input and output parameters into data type
implementations and files. If the user, for example, executes a command with the --dataset option equal
to snp:dataset.txt, then this class, with the help of the Data enum from the cli package, will translate it
into the reading of the file dataset.txt with the snp implementation of the DatasetParser class.

4.2.1 Dataset

The initial data type used in the workflow is the dataset, which is composed of allelic profiles that define
a species or taxa. Each of these profiles is represented by an identifier and several loci. Both of these
data structures are represented internally in the data.dataset package by the Dataset and Profile classes
respectively.

As previously mentioned, the dataset data type is only used in the phylogenetic analysis workflow as an in-
put, and therefore its respective parser, which is represented by the DatasetParser class in the data.dataset
package, only needs to implement the IReader interface. This class is an abstract implementation of said
interface, as it does not implement the whole dataset parsing concern, but simply puts in evidence some of the
logic involved in parsing datasets in any format to ensure reusability and avoid repeated code. Therefore, each
implementation of the dataset data type, namely the FASTA, ML, and SNP classes, extend the DatasetParser
class. The UML class diagram that represents this package can be seen in Figure 4.6.

Profileparse(Iterator<String>)

SNP

Dataset(List<Profile>)

String[]ids()
intsize()

Profileprofile(int)

Dataset

Profileparse(Iterator<String>)

ML

Profile(String, String)
Profile(String, Stream<String>)

Stringid()
intsize()

Integerlocus(int)

Profile

voidinit(Iterator<String>)
Profileparse(Iterator<String>)

FASTA

Datasetparse(Stream<String>)
voidinit(Iterator<String>)

Profileparse(Iterator<String>)

DatasetParser

«create»

«create»
«create»«create»

*

1

Figure 4.6: UML class diagram of the dataset package.

32

4.2.2 Distance Matrix

After the dataset data type, comes the distance matrix data type, which is composed of distances between
each loci of a species or taxa that define the evolutionary distance between them. This data structure is
represented in the data.matrix package by the Matrix class, which defines two inner functional interfaces for
the distance calculation and correction, namely the IDistance and ICorrection interfaces, to be received
as parameters to calculate and correct the distances of the matrix. This data type distinguishes between
symmetric and asymmetric distance matrices to optimize its memory usage by only allocating the space
required to store the different distances. Likewise, it only allocates space for the distances when it is necessary,
relying on a lazy approach for the distance calculation.

The matrix data type is used in the phylogenetic analysis workflow both as an input and an output, and
therefore its respective parser, which is represented by the MatrixParser class in the data.matrix package,
needs to implement both the IReader and IWriter interfaces. This class is an abstract implementation of
said interface, as it does not implement any of the matrix parsing concern, but simply puts in evidence the
fact that each matrix parser should implement both the IReader and IWriter interfaces. Therefore, each
implementation of the data type, namely the Symmetric and Asymmetric classes, extend the MatrixParser
class. However, since these two formats are very similar, to ensure reusability and avoid repeated code, there
is an intermediate abstract class that both extend, namely the SymmetryParser class, which in turn extends
the MatrixParser class. The UML class diagram that represents this package can be seen in Figure 4.7.

booleansymmetric()

Asymmetric

booleansymmetric()

Symmetric

Matrix(boolean, String[], IDistance)
Matrix(boolean, String[], Double[][])

String[]ids()
intsize()

doubledistance(int, int)
Matrixcorrect(ICorrection)

Matrix

booleansymmetric()
Matrixparse(Stream<String>)
Stringparse(Matrix)

SymmetryParser

MatrixParser

doubleget(int, int)

IDistance

doubleget(double)

ICorrection

1
1

«create»

Figure 4.7: UML class diagram of the matrix package.

33

4.2.3 Phylogenetic Tree

Lastly, after the distance matrix data type, comes the phylogenetic tree data type, which is composed of
edges that represent the evolutionary relationships between the loci of the species or taxa. Each of these edges
is represented by the identifiers of two loci and the distance between them. Both of these data structures are
represented in the data.tree package by the Tree and Edge classes respectively.

The tree data type is used in the phylogenetic analysis workflow both as an input and an output, and
therefore its respective parser, which is represented by the TreeParser class in the data.tree package, needs
to implement both the IReader and IWriter interfaces. This class is an abstract implementation of said
interface, as it does not implement any of the tree parsing concern, but simply puts in evidence the fact that
each tree parser should implement both the IReader and IWriter interfaces. Therefore, each implementation
of the tree data type, namely the Newick and Nexus classes, extend the TreeParser class. However, since
the Nexus format is very similar to the Newick format, in the sense that it only adds information on top of
it, to ensure reusability and avoid repeated code, the Nexus class extends the Newick class. The UML class
diagram that represents this package can be seen in Figure 4.8.

Tree(String[])
Tree(String[], List<Edge>)

String[]ids()
Stream<Edge>edges()

voidadd(Edge)
voidremove(Edge)

Tree

Treeparse(Stream<String>)
Stringparse(Tree)

Newick

Edge(int, int, double)

intfrom()
intto()

doubledistance()

Edge

TreeParser

Treeparse(Stream<String>)
Stringparse(Tree)

Nexus

«create»

«create»

*
1

Figure 4.8: UML class diagram of the tree package.

34

4.3 Commands

The phylogenetic analysis workflow can be decomposed into four consecutive steps, the distance calcu-
lation, distance correction, inference algorithm, and local optimization steps. The Main class setups the
workflow by calling the ICommand interface from the command package for each step of the workflow. For
each call to this interface it takes the arguments and context it receives to instantiate the implementations of
the corresponding command and input and output data parsers, and then gets the input for that command,
executes it, and stores its result. If the command is repeatable, such as the local optimization, it will repeat
this logic until there are no more CLI arguments for that command. However, if the command is optional,
such as the distance correction and local optimization, and is not provided in the CLI arguments it will be
skipped. Despite the workflow being correctly setup by the Main class, it may not be executed in its entirety
and some steps may be skipped as the user may choose to ignore some steps of the workflow by providing a
file as input to the steps that needed the output of other steps.

For each of the four steps of the workflow there is an implementation of the ICommand interface, respectively
the Distance, Correction, Algorithm, and Optimization abstract classes from the command.distance,
command.correction, command.algorithm, and command.optimization packages respectively. The imple-
mentations of these abstract classes are what the ICommand interface instantiates and runs. Each implemen-
tation of these abstract classes must directly or indirectly implement the only abstract method the interface
provides, which is responsible for the logic that transforms the input data into the output data. By default,
this interface only provides one input to the execution, however it provides another method, which is not
abstract, that each implementation may override to parse additional options it might need for its execution.
The UML class diagram that represents this package can be seen in Figure 4.9.

voidrun(Arguments, Context, Command, IGetter<T>, BiConsumer<Options, R>)
voidinit(Context, Options)

Rprocess(T)

ICommand

Optimization Matrixprocess(Dataset)
booleansymmetric()
doubledistance(Profile, Profile)

Distance

Matrixprocess(Matrix)
doublecorrect(double)

Correction

Algorithm

Tget(Options)

IGetter

Figure 4.9: UML class diagram of the command package.

The IGetter interface, internal to the ICommand interface, is a functional interface similar to the Java
built-in Function interface, with the difference that it may throw an exception related to a missing input.
It is used to represent the retrieval of the input data from the arguments or context, and it may throw an
exception if it can not retrieve a value from either. Whereas the Java built-in BiConsumer class is used to
represent the storage of the output in the context and in an output file if any, without throwing any exception.

35

4.3.1 Distance Calculation

The logic of the distance calculation step of the phylogenetic analysis workflow is provided by the Distance
class from the command.distance package. This class is an abstract implementation of the ICommand interface
that receives a dataset and transforms it into a distance matrix with the evolutionary distances between the
profiles calculated according to a distance metric. Each implementation of this abstract class only has to
define whether the resulting distance matrix is symmetric or not, and provide a method to calculate the
evolutionary distance between any two given profiles. The available implementations of this abstract class
are the GrapeTree, Hamming, and Kimura classes. The UML class diagram that represents this package can
be seen in Figure 4.10.

booleansymmetric()
doubledistance(Profile, Profile)

GrapeTree

Matrixprocess(Dataset)
booleansymmetric()
doubledistance(Profile, Profile)

Distance

booleansymmetric()
doubledistance(Profile, Profile)

Hamming

booleansymmetric()
doubledistance(Profile, Profile)

Kimura

Figure 4.10: UML class diagram of the distance package.

4.3.2 Distance Correction

After the distance calculation step comes the optional distance correction step of the phylogenetic analysis
workflow. The logic of this step is provided by the Correction class from the command.correction package.
This class is an abstract implementation of the ICommand interface that receives a distance matrix and
transforms it into another distance matrix with the evolutionary distances corrected according to a model
of evolution. Each implementation of this abstract class only has to provide a method to correct any given
evolutionary distance. The only available implementation of this abstract class is the JukesCantor class.
The UML class diagram that represents this package can be seen in Figure 4.11.

doublecorrect(double)

JukesCantor

Matrixprocess(Matrix)
doublecorrect(double)

Correction

Figure 4.11: UML class diagram of the correction package.

36

4.3.3 Inference Algorithm

The logic of the inference algorithm step of the phylogenetic analysis workflow is provided by the
Algorithm class from the command.algorithm package. This class is an abstract implementation of the
ICommand interface that receives a distance matrix and transforms it into a phylogenetic tree with the evolu-
tionary relationships between the profiles selected by a clustering algorithm. Despite sharing the same general
scheme, each clustering algorithm can be better optimized by using its own scheme and data structures. Thus
to achieve a better performance, each implementation of this abstract class must define how the distance
matrix is transformed into a phylogenetic tree. The UML class diagram that represents this package can be
seen in Figure 4.12.

Algorithmvoidinit(Context, Options)
Treeprocess(Matrix)

GoeBURST

Treeprocess(Matrix)
intweight(Cluster)

doublelambda(Cluster, Cluster)
doublelength(double)

NeighbourJoining

Treeprocess(Matrix)

Edmonds

Treeprocess(Matrix)
doubledissimilarity(double, double, double, int, int)

GloballyClosestPairs

doubledissimilarity(double, double, double, int, int)

CL

doubledissimilarity(double, double, double, int, int)

SL

doubledissimilarity(double, double, double, int, int)

UPGMA

doubledissimilarity(double, double, double, int, int)

UPGMC

doubledissimilarity(double, double, double, int, int)

WPGMA

doubledissimilarity(double, double, double, int, int)

WPGMC

intweight(Cluster)
doublelambda(Cluster, Cluster)
doublelength(double)

SaitouNei

intweight(Cluster)
doublelambda(Cluster, Cluster)
doublelength(double)

StudierKeppler

intweight(Cluster)
doublelambda(Cluster, Cluster)
doublelength(double)

UNJ

Figure 4.12: UML class diagram of the algorithm package.

37

The Algorithm abstract class is directly implemented by the GloballyClosestPairs, GoeBURST, Edmonds,
and NeighbourJoining classes from the respective command.algorithm.gcp, command.algorithm.goeburst,
command.algorithm.edmonds, and command.algorithm.nj packages. The GloballyClosestPairs class is
an abstract implementation of the Algorithm class, which concentrates the overall logic of GCP algorithms
in just one place. The available implementations of this abstract class are the SL, CL, UPGMA, WPGMA, UPGMC,
and WPGMC classes, which only have to implement one method to obtain the dissimilarity between two nodes
of the phylogenetic tree, as it is their only difference. The GoeBURST and Edmonds classes are final implemen-
tations of the Algorithm class. Despite both being MST algorithms, their implementations do not share a
common logic between them as they can be better optimized if implemented completely separately. Finally,
the NeighbourJoining class is an abstract implementation of the Algorithm class, which concentrates the
overall logic of NJ algorithms in just one place. The available implementations of this abstract class are the
SaitouNei and StudierKeppler classes, which have to implement three methods to obtain the weight of a
cluster, the proportion of a given cluster to another, and the length corresponding to a given distance, as it
is where they differ.

4.3.4 Local Optimization

After the inference algorithm step comes the optional local optimization step of the phylogenetic analysis
workflow. The logic of this step is provided by the Optimization class from the command.optimization
package. This class is an abstract implementation of the ICommand interface that receives a phylogenetic
tree and transforms it into another phylogenetic tree with the evolutionary relationships locally optimized
according to an algorithm. The general scheme of local optimization algorithms is provided by this abstract
class, and therefore each of its implementations only has to implement the selection and joining steps of the
algorithm which is where they differ. The only available implementation of this abstract class is the LBR
class. This class however also overrides the reduction step as it is a particularity of the LBR algorithm. The
UML class diagram that represents this package can be seen in Figure 4.13.

Edgeselect(Set<Edge>)
Edgejoin(int, Matrix, Tree, Edge)
voidreduce(Set<Edge>, Tree, Edge, Edge)

LBR

voidinit(Context, Options)
Treeprocess(Tree)

Edgeselect(Set<Edge>)
Edgejoin(int, Matrix, Tree, Edge)
voidreduce(Set<Edge>, Tree, Edge, Edge)

Optimization

Figure 4.13: UML class diagram of the optimization package.

38

4.4 Discussion
This project is composed of six main concerns, namely the CLI argument parsing, mapping of arguments

to commands and data parsers, exception handling, logging, data parsing, and command execution. Each of
these concerns is translated into a different package inside the pt.ist.phylolib package, respectively the
cli, reflection, exception, logging, data, and command packages.

The implementation of this project takes into account reusability, and for that reason the commands and
data types concentrate as much reusable code as possible in common hierarchical classes. As a result, it also
improves its extensibility, as it becomes easier to extend commands and data types since most of the code
necessary to implement a command or data type is already written. Nonetheless, performance is also taken
into account in the implementation, as some code that could be reused is not, due to optimizations that can
be made specifically to some algorithm implementations.

39

40

Chapter 5

Experimental Evaluation

The purpose of this chapter is to enumerate and explain all of the tests that were performed on this
library and the results that were obtained from their executions, as well as the environment in which they
were performed and the constants that were used.

All components of this library were tested in terms of their functionality, through unit testing imple-
mented using the TestNG [35] framework, except for the local optimization which does not have another
implementation to compare its results to. However, only the algorithm component was tested in terms of
time and memory performances, since it is the core operation of the workflow and the one that requires the
most time and memory to execute. This chapter will focus itself on the time and memory performances,
comparing both the performance of each algorithm against each other, as well as the performance of each
algorithm with an implicit matrix versus with an explicit matrix.

Using an implicit matrix in the execution of an algorithm is another way of saying to only calculate the
distances from the dataset as the algorithm requests them, instead of already having them precomputed in
a distance matrix. This is also known as the lazy version. While using an explicit matrix is the opposite
of that, that is, to already have the distances precomputed in a distance matrix. This is also known as the
eager version. The lazy and eager versions can be translated into executing the library providing a dataset
and a distance matrix respectively. Comparing the results of the lazy and eager versions is useful to help
better understand the advantages and disadvantages of storing the distance matrix and reusing it.

The time and memory performances were tested through the implementation and execution of benchmarks
with 10 warmups and 20 iterations, over the first ten to one thousand profiles of the Streptococcus pneumoniae
dataset [36], using the Hamming distance as the distance calculation method. The results are represented
as a function of the number of profiles n. The same dataset and distance calculation method were used
throughout the benchmarks to provide an equal and fair evaluation to all algorithms. For that same reason,
all tests were performed in the same machine, in this case with a 2.6 GHz 6-Core Intel Core i7 processor and
a 16 GB 2667 MHz DDR4 memory.

5.1 Time

This section analyzes the results obtained from the time performance benchmarks, comparing the time
complexity of each algorithm, as well as the difference in time performance of the eager and lazy versions.

The average running time that each algorithm took to execute in the eager version, over the increasing

41

number of profiles of the given dataset, is represented in Table 5.1, in milliseconds. From this table it is
possible to see the difference in time complexity that exists between the NJ algorithms and all the others.

Algorithm
Profiles 10 100 200 300 400 500 600 700 800 900 1000

goeBURST 0 1 2 4 6 10 14 21 31 40 53
goeBURST Full 0 5 24 64 124 213 321 442 616 794 1005

Edmonds 0 15 79 206 381 666 971 1361 1844 2371 2996
CL 0 4 22 59 110 193 284 399 500 658 772
SL 0 2 13 35 65 111 163 235 301 383 468

UPGMA 0 4 22 59 115 200 296 424 544 705 828
UPGMC 0 1 7 31 55 84 138 199 267 336 408
WPGMA 0 4 22 61 119 202 288 425 545 714 852
WPGMC 0 2 12 34 68 119 173 250 327 386 510
Saitou Nei 0 9 82 232 574 1125 2051 3362 5738 8261 11538

Studier Keppler 0 10 86 232 555 1118 2058 3379 5732 8272 11593
UNJ 0 9 87 230 559 1082 1976 3257 5691 7822 10828

Table 5.1: Average running times in milliseconds for ten to one thousand profiles using the eager version.

The obtained results can also be represented in the form of a plot graph, as in Figure 5.1, where it is
possible to better understand the differences in time complexity between the different types of algorithms.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

1.2

·104

n

T
im

e
[m

s]

goeBURST
goeBURST Full

Edmonds
CL
SL

UPGMA
UPGMC
WPGMA
WPGMC
Saitou Nei

Studier Keppler
UNJ

Figure 5.1: Running times in milliseconds for ten to one thousand profiles using the eager version.

Despite having the same time complexity as other MST and GCP algorithms, it is possible to see from
the previous plot graph that the Edmonds algorithm is much slower than the others.

The average running time that each algorithm took to execute in the lazy version, over the increasing
number of profiles of the given dataset, is represented in Table 5.2, in milliseconds.

42

Algorithm
Profiles 10 100 200 300 400 500 600 700 800 900 1000

goeBURST 0 1 2 5 13 22 30 40 53 75 92
goeBURST Full 0 5 24 68 130 233 342 473 641 819 1044

Edmonds 0 17 82 209 403 674 991 1365 1876 2384 3077
CL 0 4 24 62 121 193 300 378 529 663 811
SL 0 2 16 39 65 101 178 244 301 396 463

UPGMA 0 4 24 62 128 203 311 416 576 718 881
UPGMC 0 2 13 35 58 88 149 221 278 350 413
WPGMA 0 4 25 64 123 208 326 427 578 728 883
WPGMC 0 2 15 37 71 105 189 262 343 401 506
Saitou Nei 0 9 89 227 574 1178 2001 3236 5442 7827 10981

Studier Keppler 0 10 89 228 575 1107 1995 3235 5435 7868 10990
UNJ 0 9 87 226 565 1102 1944 3137 5190 7449 10341

Table 5.2: Running times in milliseconds for ten to one thousand profiles using the lazy version.

The difference in the results of the eager and lazy versions can be better compared in individual plot
graphs. Figures 5.2, 5.3 and 5.4 represent these differences for MST, GCP and NJ algorithms respectively.

From these individual plot graphs it is possible to see that the implementations of the algorithms con-
form to their theoretical time complexities, namely O(n3) for NJ algorithms and O(n2) for MST and GCP
algorithms. It is also possible to see a difference in running time between the eager and lazy versions of
the algorithms. However, these differences are hardly noticeable due to the small impact that the distance
calculation has on the workflow, compared to the inference algorithm, except when compared to goeBURST,
as its running times are small enough to notice a difference. Thus, the benefit of storing the distance matrix
in a file and reusing it is almost insignificant in terms of running time for most algorithms.

5.2 Memory

The implementation of the memory performance benchmarks relied on the MemoryPoolMXBean interface
from the java.lang.management package, which represents a management interface of the memory resources
managed by the JVM. By using this interface it was possible to get the peak of memory usage of a memory
pool since the virtual machine was started.

The average memory usage that each algorithm took to execute in the eager version, over the increasing
number of profiles of the given dataset, is represented in Table 5.3, in megabytes. From this table it is possible
to see that the goeBURST algorithms require the lesser memory between all algorithms, while the Edmonds
algorithm requires the most.

The obtained results can also be represented as a plot graph, as in Figure 5.5, where it is possible to
better understand the differences in memory complexity between the different implemented algorithms.

The average memory usage that each algorithm took to execute in the lazy version, over the increasing
number of profiles of the given dataset, is represented in Table 5.4, in megabytes.

The difference in the results of the eager and lazy versions can be better compared in individual plot
graphs. Figures 5.6, 5.7 and 5.8 represent these differences for MST, GCP and NJ algorithms respectively.

From these individual plot graphs it is possible to see that the implementations of the MST and GCP
algorithms have a memory complexity of O(n2), while the implementations of the NJ algorithms tend more
towards a memory complexity of O(n). However, despite that, the implementations of the NJ algorithms

43

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

80

100

O(n2)

T
im

e
[m

s]
Eager goeBURST
Lazy goeBURST

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

1,000

O(n2)

T
im

e
[m

s]

Eager goeBURST Full
Lazy goeBURST Full

0 0.2 0.4 0.6 0.8 1

·106

0

1,000

2,000

3,000

O(n2)

T
im

e
[m

s]

Eager Edmonds
Lazy Edmonds

Figure 5.2: Running times in milliseconds for MST algorithms compared to their time complexity.

Algorithm
Profiles 10 100 200 300 400 500 600 700 800 900 1000

goeBURST 11 11 13 16 19 23 29 35 42 51 60
goeBURST Full 13 13 16 22 27 34 47 59 71 82 95

Edmonds 12 19 34 73 103 131 174 216 285 400 435
CL 13 14 20 33 44 71 88 126 159 220 219
SL 13 14 20 28 39 55 75 93 117 139 187

UPGMA 12 14 20 29 44 73 90 122 158 207 211
UPGMC 13 14 19 26 38 55 70 100 122 146 156
WPGMA 12 14 20 31 52 81 87 118 155 215 209
WPGMC 13 14 19 25 38 52 73 89 113 136 166
Saitou Nei 8 18 78 105 159 215 280 324 331 349 358

Studier Keppler 13 21 92 112 160 211 282 335 336 354 373
UNJ 10 19 90 106 161 218 287 353 356 384 389

Table 5.3: Peak memory usage in megabytes for ten to one thousand profiles using the eager version.

44

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

O(n2)

T
im

e
[m

s]

Eager CL
Lazy CL

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

400

500

O(n2)

T
im

e
[m

s]

Eager SL
Lazy SL

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

O(n2)

T
im

e
[m

s]

Eager UPGMA
Lazy UPGMA

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

400

O(n2)

T
im

e
[m

s]
Eager UPGMC
Lazy UPGMC

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

600

800

O(n2)

T
im

e
[m

s]

Eager WPGMA
Lazy WPGMA

0 0.2 0.4 0.6 0.8 1

·106

0

200

400

O(n2)

T
im

e
[m

s]

Eager WPGMC
Lazy WPGMC

Figure 5.3: Running times in milliseconds for GCP algorithms compared to their time complexity.

45

0 0.2 0.4 0.6 0.8 1

·109

0

0.2

0.4

0.6

0.8

1

1.2

·104

O(n3)

T
im

e
[m

s]
Eager Saitou Nei
Lazy Saitou Nei

0 0.2 0.4 0.6 0.8 1

·109

0

0.2

0.4

0.6

0.8

1

1.2

·104

O(n3)

T
im

e
[m

s]

Eager Studier Keppler
Lazy Studier Keppler

0 0.2 0.4 0.6 0.8 1

·109

0

0.2

0.4

0.6

0.8

1

·104

O(n3)

T
im

e
[m

s]

Eager UNJ
Lazy UNJ

Figure 5.4: Running times in milliseconds for NJ algorithms compared to their time complexity.

seem to have an overhead great enough to still require more memory than the implementations of the MST
and GCP algorithms with smaller datasets. It is also possible to see that the memory results do not follow
a clear pattern and the difference between the lazy and eager versions is almost inexistent. Thus, reusing a
distance matrix stored in a file is almost insignificant in terms of memory for all implemented algorithms.

5.3 Discussion

The results obtained from the experimental evaluation lead to the conclusion that the implementations
of the algorithms conform to their theoretical time complexity. That is, the implementations of the NJ
algorithms have a time complexity of O(n3), while the implementations of the MST and GCP algorithms
have a time complexity of O(n2). These results also show that the Edmonds algorithm is clearly slower than
the other MST and GCP algorithms, despite having the same time complexity.

In terms of memory performance, the obtained results lead to the conclusion that the implementations

46

0 200 400 600 800 1,000

0

100

200

300

400

n

M
em

or
y
[M

B]

goeBURST
goeBURST Full

Edmonds
CL
SL

UPGMA
UPGMC
WPGMA
WPGMC
Saitou Nei

Studier Keppler
UNJ

Figure 5.5: Peak memory usage in megabytes for ten to one thousand profiles using the eager version.

Algorithm
Profiles 10 100 200 300 400 500 600 700 800 900 1000

goeBURST 11 11 13 16 18 20 24 30 39 51 58
goeBURST Full 13 13 15 22 27 40 49 58 77 84 98

Edmonds 12 18 36 71 102 131 171 222 296 370 438
CL 13 14 21 35 54 82 100 124 161 196 246
SL 13 14 21 29 45 66 79 99 137 162 189

UPGMA 13 14 20 32 54 77 94 126 160 209 237
UPGMC 13 14 20 26 39 56 74 99 130 146 173
WPGMA 12 13 20 34 46 73 101 129 163 188 239
WPGMC 13 14 20 26 41 59 76 99 129 142 173
Saitou Nei 10 18 93 109 158 278 326 358 340 359 381

Studier Keppler 13 21 99 118 157 211 353 354 346 359 379
UNJ 10 18 94 117 164 229 330 370 359 400 412

Table 5.4: Peak memory usage in megabytes for ten to one thousand profiles using the lazy version.

of the MST and GCP algorithms have a memory complexity of O(n2), while the implementations of the
NJ algorithms tend more towards a memory complexity of O(n). Additionally, these results show that the
implementations of the NJ algorithms seem to have an overhead great enough to still require more memory
than the implementations of the MST and GCP algorithms with smaller datasets.

From these results, it is possible to see a difference in running time between the eager and lazy versions of
the algorithms. However, these differences are hardly noticeable, due to the small impact that the distance
calculation step has on the workflow, compared to the inference algorithm step, except when using the
goeBURST algorithm, as its running times are small enough to notice a significant difference. And, despite
not following a clear pattern, it is also possible to see that the difference between the lazy and eager versions
in terms of memory usage is almost inexistent. Thus, the benefit of storing the distance matrix in a file and

47

0 0.2 0.4 0.6 0.8 1

·106

10

20

30

40

50

60

O(n2)

M
em

or
y
[M

B]
Eager goeBURST
Lazy goeBURST

0 0.2 0.4 0.6 0.8 1

·106

20

40

60

80

100

O(n2)

M
em

or
y
[M

B]

Eager goeBURST Full
Lazy goeBURST Full

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

400

O(n2)

M
em

or
y
[M

B]

Eager Edmonds
Lazy Edmonds

Figure 5.6: Peak memory usage in megabytes for MST algorithms compared to their memory complexity.

reusing it is almost insignificant in terms of running time and memory usage for most algorithms.

48

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

200

250

O(n2)

M
em

or
y
[M

B]

Eager CL
Lazy CL

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

200

O(n2)

M
em

or
y
[M

B]

Eager SL
Lazy SL

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

200

250

O(n2)

M
em

or
y
[M

B]

Eager UPGMA
Lazy UPGMA

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

O(n2)

M
em

or
y
[M

B]
Eager UPGMC
Lazy UPGMC

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

200

250

O(n2)

M
em

or
y
[M

B]

Eager WPGMA
Lazy WPGMA

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

150

O(n2)

M
em

or
y
[M

B]

Eager WPGMC
Lazy WPGMC

Figure 5.7: Peak memory usage in megabytes for GCP algorithms compared to their memory complexity.

49

0 200 400 600 800 1,000

0

100

200

300

400

O(n)

M
em

or
y
[M

B]

Eager Saitou Nei
Lazy Saitou Nei

0 200 400 600 800 1,000

0

100

200

300

400

O(n)

M
em

or
y
[M

B]

Eager Studier Keppler
Lazy Studier Keppler

0 200 400 600 800 1,000

0

100

200

300

400

O(n)

M
em

or
y
[M

B]

Eager UNJ
Lazy UNJ

Figure 5.8: Peak memory usage in megabytes for NJ algorithms compared to their memory complexity.

50

Chapter 6

Final Remarks

This chapter provides the final remarks for this document, namely a summary of conclusions regarding
the whole project, including a summary of the phylogenetic analysis workflow, the objectives of this project,
and the time and memory evaluation results. This chapter also provides an enumeration of future work that
can be implemented on top of this project to both extend and improve it even further.

6.1 Conclusions

The phylogenetic analysis workflow can be summarized into four consecutive steps, the distance cal-
culation, distance correction, inference algorithm, and local optimization steps. The first step consists of
producing a distance matrix from a dataset, including several sequences, through a distance calculation
method, such as Hamming, GrapeTree, or Kimura, that calculates the distances between each pair of se-
quences of the dataset. The dataset can be represented in several formats, including MLST, MLVA, FASTA,
and SNP. The second step takes a distance matrix and corrects each distance using a correction formula,
such as Jukes-Cantor. This step is optional, thus it may be skipped. The third step transforms a distance
matrix into a phylogenetic tree by running a clustering algorithm, such as goeBURST, GrapeTree, UPGMA,
or NJ by Studier and Keppler. The phylogenetic tree can be represented in several formats, including Newick
and Nexus. And the fourth step takes a phylogenetic tree and tries to locally optimize it through a local
optimization algorithm, such as LBR. This step is also optional, thus it may be skipped, however it may also
be applied several times.

The goal of this project was to develop a command line application that conforms to the phylogenetic
analysis workflow and is highly performant, extensible, reusable, and portable. It is different from other
existing tools in the sense that it was built to be continuously extended and not just serve a single purpose.
It enables reading datasets, distance matrices, and phylogenetic trees from files, calculating and correcting
a distance matrix, inferring and locally optimizing a phylogenetic tree, and writing distance matrices and
phylogenetic trees to files. Additionally, it provides the capabilities of executing only certain steps of the
workflow as well as outputting the results of each step, which can be used as a way to stop and resume the
workflow whenever the user desires. This is another thing that other tools do not offer, yet is particularly
useful in certain scenarios, such as when the user intends to run several inference algorithms over the same
input data, but does not wish to waste time or resources computing the same distance matrix for all of them.

The time performance benchmarks of the experimental evaluation show that the implementations of the

51

algorithms conform to their theoretical time complexity, namely O(n3) for NJ algorithms and O(n2) for
MST and GCP algorithms. However, the implementation of the Edmonds algorithm was shown to have a
considerable overhead compared to other MST and GCP algorithms, despite having the same time complexity.
Meanwhile, the memory performance benchmarks lead to the conclusion that the implementations of the MST
and GCP algorithms have a memory complexity of O(n2), while the implementations of the NJ algorithms
tend more towards a memory complexity of O(n). However, despite showing that the implementations of
the NJ algorithms have a lower memory complexity, it is also shown that they seem to have an overhead
great enough to still require more memory than the implementations of the MST and GCP algorithms with
smaller datasets.

From the results obtained in the experimental evaluation, it is possible to see a difference in running
time between the eager and lazy versions of the algorithms. However, these differences are hardly noticeable
due to the small impact that the distance calculation step has on the workflow, compared to the inference
algorithm step, except when using the goeBURST algorithm, as its running times are small enough to notice
a significant difference. And, despite not following a clear pattern, it is also possible to see that the difference
between the lazy and eager versions in terms of memory usage is almost inexistent. Thus, the benefit of
storing the distance matrix in a file and reusing it is almost insignificant in terms of running time and
memory usage for most algorithms.

6.2 Future Work
The result of this project boils down to a library that is efficient, reusable, extensible and portable.

However, it can still be further extended to include more distance and correction metrics, inference and local
optimization algorithms, and dataset, distance matrix and phylogenetic tree formats. Furthermore, it can still
be extended in other ways, namely by including other optional steps in the phylogenetic analysis workflow,
such as the dynamic addition of relationships between the inference algorithm and local optimization steps,
and the calculation of visualization coordinates after all other steps. Also, despite it already being efficient,
its time and memory performances can still be improved upon by, for example, introducing parallelization in
the algorithms and a cache system in the distance matrix.

52

References

[1] João A Carriço, Maxime Crochemore, Alexandre P Francisco, Solon P Pissis, Bruno Ribeiro-Gonçalves,
and Cátia Vaz. Fast phylogenetic inference from typing data. Algorithms for Molecular Biology, 13(1):4,
2018.

[2] Andreia Sofia Teixeira, Pedro T Monteiro, João A Carriço, Mário Ramirez, and Alexandre P Fran-
cisco. Not seeing the forest for the trees: size of the minimum spanning trees (msts) forest and branch
significance in mst-based phylogenetic analysis. Plos one, 10(3):e0119315, 2015.

[3] Cátia Vaz, Marta Nascimento, João A Carriço, Tatiana Rocher, and Alexandre P Francisco. Distance-
based phylogenetic inference from typing data: a unifying view. Briefings in Bioinformatics, 07
2020. bbaa147. arXiv:https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/
bbaa147/33551477/bbaa147.pdf, doi:10.1093/bib/bbaa147.

[4] Ann-Katrin Llarena, Bruno Filipe Ribeiro-Gonçalves, Diogo Nuno Silva, Jani Halkilahti, Miguel Paulo
Machado, Mickael Santos Da Silva, Anniina Jaakkonen, Joana Isidro, Crista Hämäläinen, Jasmin Joen-
perä, et al. Innuendo: A cross-sectoral platform for the integration of genomics in the surveillance of
food-borne pathogens. EFSA Supporting Publications, 15(11):1498E, 2018.

[5] Kevin Dowd and Charles Severance. High performance computing. 2010.

[6] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology, 26(10):1135, 2008.

[7] Alexandre P Francisco, Cátia Vaz, Pedro T Monteiro, José Melo-Cristino, Mário Ramirez, and Joao A
Carriço. Phyloviz: phylogenetic inference and data visualization for sequence based typing methods.
BMC bioinformatics, 13(1):87, 2012.

[8] Marta Alexandra Fragoso Nascimento. Large scale and dynamic phylogenetic inference from epidemic
data. 2017.

[9] Joseph Felsenstein, J Archie, W Day, W Maddison, C Meacham, F Rohlf, and D Swofford. The newick
tree format, 1986.

[10] David R Maddison, David L Swofford, and Wayne P Maddison. Nexus: an extensible file format for
systematic information. Systematic biology, 46(4):590–621, 1997.

[11] EBNF Syntaxt Specification Standard. Ebnf: Iso/iec 14977: 1996 (e). URL http://www. cl. cam. ac.
uk/mgk25/iso-14977. pdf, 70, 1996.

[12] Mohammad Norouzi, David J Fleet, and Ruslan R Salakhutdinov. Hamming distance metric learning.
In Advances in neural information processing systems, pages 1061–1069, 2012.

53

http://arxiv.org/abs/https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbaa147/33551477/bbaa147.pdf
http://arxiv.org/abs/https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbaa147/33551477/bbaa147.pdf
https://doi.org/10.1093/bib/bbaa147

[13] Zhemin Zhou, Nabil-Fareed Alikhan, Martin J Sergeant, Nina Luhmann, Cátia Vaz, Alexandre P Fran-
cisco, João André Carriço, and Mark Achtman. Grapetree: visualization of core genomic relationships
among 100,000 bacterial pathogens. Genome research, 28(9):1395–1404, 2018.

[14] Keith Erickson. The jukes-cantor model of molecular evolution. Primus, 20(5):438–445, 2010.

[15] Joseph Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood approach. Journal
of molecular evolution, 17(6):368–376, 1981.

[16] Masami Hasegawa, Hirohisa Kishino, and Taka-aki Yano. Dating of the human-ape splitting by a
molecular clock of mitochondrial dna. Journal of molecular evolution, 22(2):160–174, 1985.

[17] Jacques D Retief. Phylogenetic analysis using phylip. In Bioinformatics methods and protocols, pages
243–258. Springer, 2000.

[18] Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.

[19] James A Studier and Karl J Keppler. A note on the neighbor-joining algorithm of saitou and nei.
Molecular biology and evolution, 5(6):729–731, 1988.

[20] Olivier Gascuel. Concerning the nj algorithm and its unweighted version, unj. Mathematical hierarchies
and biology, 37:149–171, 1997.

[21] Olivier Gascuel. Bionj: an improved version of the nj algorithm based on a simple model of sequence
data. Molecular biology and evolution, 14(7):685–695, 1997.

[22] JF Li. A fast neighbor joining method. Genetics and molecular research: GMR, 14(3):8733–8743, 2015.

[23] Jason Evans, Luke Sheneman, and James Foster. Relaxed neighbor joining: a fast distance-based
phylogenetic tree construction method. Journal of molecular evolution, 62(6):785–792, 2006.

[24] Alexandre P Francisco, Miguel Bugalho, Mário Ramirez, and João A Carriço. Global optimal eburst
analysis of multilocus typing data using a graphic matroid approach. BMC bioinformatics, 10(1):152,
2009.

[25] Joseph Kruskal. Greedy algorithm for the minimum spanning tree problem. Proceedings of the American
Mathematical Society, pages 48–50, 1956.

[26] Jack Edmonds. Optimum branchings. Journal of Research of the national Bureau of Standards B,
71(4):233–240, 1967.

[27] Chris Whidden and Frederick A Matsen IV. Efficiently inferring pairwise subtree prune-and-regraft
adjacencies between phylogenetic trees. In 2018 Proceedings of the Fifteenth Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages 77–91. SIAM, 2018.

[28] Bhaskar DasGupta Xin He Tao Jiang, Ming Li, John Tromp, and Louxin Zhang. On computing the
nearest neighbor interchange distance. In Discrete Mathematical Problems with Medical Applications:
DIMACS Workshop Discrete Mathematical Problems with Medical Applications, December 8-10, 1999,
DIMACS Center, volume 55, page 125. American Mathematical Soc., 2000.

54

[29] Benjamin L Allen and Mike Steel. Subtree transfer operations and their induced metrics on evolutionary
trees. Annals of combinatorics, 5(1):1–15, 2001.

[30] Stéphane Guindon, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim Hordijk, and Olivier
Gascuel. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
performance of phyml 3.0. Systematic biology, 59(3):307–321, 2010.

[31] Alexandros Stamatakis. Raxml version 8: a tool for phylogenetic analysis and post-analysis of large
phylogenies. Bioinformatics, 30(9):1312–1313, 2014.

[32] David L Swofford. Paup*: Phylogenetic analysis using parsimony (and other methods) 4.0. b5. 2001.

[33] John P Huelsenbeck and Fredrik Ronquist. Mrbayes: Bayesian inference of phylogenetic trees. Bioin-
formatics, 17(8):754–755, 2001.

[34] Sudhir Kumar, Masatoshi Nei, Joel Dudley, and Koichiro Tamura. Mega: a biologist-centric software
for evolutionary analysis of dna and protein sequences. Briefings in bioinformatics, 9(4):299–306, 2008.

[35] Cédric Beust and Hani Suleiman. Next generation Java testing: TestNG and advanced concepts. Pearson
Education, 2007.

[36] Keith Jolley. Pubmlst. https://pubmlst.org/. [Online; accessed 15 December 2019].

55

https://pubmlst.org/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Objectives
	Document Structure

	Background
	Phylogenetic Analysis
	Analysis
	Data Formats

	Similarity
	Typing
	Criterion

	Clustering
	Globally Closest Pairs
	Neighbour Joining
	Minimum Spanning Tree

	Optimization
	Related Work
	Discussion

	Proposed Solution
	Requirements
	Functional
	Non Functional
	Use Cases

	Architecture
	Distance Calculation
	Distance Correction
	Inference Algorithm
	Local Optimization
	Dataset Parsing
	Distance Matrix Parsing
	Phylogenetic Tree Parsing

	Technologies
	Discussion

	Implementation
	Structure
	Arguments
	Reflection
	Exceptions
	Logging

	Data
	Dataset
	Distance Matrix
	Phylogenetic Tree

	Commands
	Distance Calculation
	Distance Correction
	Inference Algorithm
	Local Optimization

	Discussion

	Experimental Evaluation
	Time
	Memory
	Discussion

	Final Remarks
	Conclusions
	Future Work

	References

